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The most beautiful thing we can experience is the mysterious. It is the source of all true 
art and science. He to whom this emotion is a stranger, who can no longer pause to 
wonder and stand rapt in awe, is as good as dead: his eyes are closed. 

-Albert Einstein
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Definitions 

a = Helmholtz coil radius 
Tα = Taylor cone angle (49.3°) 

b = distance between Helmholtz coils 
B = magnetic field strength (scalar) 
B = magnetic field strength (vector) 

cd = capillary diameter 
extd = extraction distance 

dt = time delta 
 = inverse of dimensionless flowrate 

 = viscous dimensionless parameter 
e  = elementary charge 
ˆre = radial component 
E = electric field (scalar) 
E  = electric field (vector) 

,aE ζ  = electric field determined by Krpoun-Shea model 

iE = ion kinetic energy 
ion = most probable ion energy 

0 = permittivity of free space 
r = relative permittivity 
fluid = fluid viscosity 

Q = dimensionless flowrate parameter 

V = voltage utilization efficiency 
 rf  = Fernandez de la Mora constant 

LorentzF = Lorentz force 
 rg  = permittivity constant for F. de la Mora scaling law 

 = surface tension 
H = magnetic field (scalar) 
H = magnetic field (vector) 
I = emission current 

HI = Helmholtz coil wire current 
TI = total Helmholtz coil current 

I = identity matrix 
K = electrical conductivity 
  = ratio of FEM electric field and potential in Krpoun-Shea model 

cL = capillary length 
TOFL = length of time-of-flight tube 

m  = mass 
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m q  = mass-to-charge ratio 
i im q = mass-to-charge ratio of specific ion species 

M = magnetization of the fluid 
0 = magnetic permeability of free space 

n = number of wraps in a Helmholtz coil 
  = dimensionless current 
p  = pressure of atmosphere/vacuum 
p̂  = pressure within electrospray fluid 

cp = capillary pressure 
mp = fluid-magnetic pressure 
np = magnetic normal traction 
sp = magnetostrictic pressure 

P = supply pressure 
q = particle charge 

Rq = droplet charge 
max
Rq = Rayleigh limit of droplet charge 

Q = volumetric flowrate 
r = radius from the center of electrospray beam-axis 

ar = cone apex radius 
cr = capillary radius 
Larmorr = Larmor radius 

DR = droplet diameter 
1 2,R R = radii of curvature of liquid meniscus 

 = density 
B = beam half-angle 
E = electric stress 
ST = surface tension stress 

flightt = time of flight 
T = temperature  
Tr = radial component of thrust  

mT = magnetic stress tensor   
v  = particle velocity (scalar) 
v  = particle velocity (vector) 
v = perpendicular component of particle velocity 

extV = extraction potential 
iV = ion acceleration potential 
onsetV = onset potential 

Vζ  = potential used in Krpoun-Shea model 
z = center axis of Taylor cone and/or electrospray 
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Abstract 

Two electrospray sources were developed to operate on an ionic liquid ferrofluid; one 

source was a pressure-fed capillary electrospray source and the other was a novel 

electrospray source which used a magnetically-induced instability to produce a peak from 

which an electric field could extract electrospray. Multiple characteristics of electrospray 

operation were examined for both sources using Faraday plates/cups, a quartz 

crystal microbalance, a retarding potential analyzer, and a time-of-flight mass 

spectrometer. The ILFF electrosprays for a capillary source were shown to operate in a 

mixed ion/droplet regime. The mass flow of the electrospray beam was primarily 

transported by larger particles (potential droplets) within it. The magnetic nanoparticles 

increased the required flowrate and extraction potential of the source, as well as 

the emission current at a given flowrate. The nanoparticles also influenced the 

beam divergence and energy of an electrospray, increasing and 

decreasing each respectively with higher concentrations of NPs. The magnetic 

field had significant influence on the flowrate of the electrospray, as it reduced 

the minimum stable flowrate by upwards of 16 percent. It also was shown to 

decreased the emission current of ILFF electrosprays for a given 

flowrate, while concurrently increasing the beam energy of particles in the 

electrospray. Other effects of magnetic field on electrospray characteristics were 

either inconclusive or insignificant. 

xxxv 
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Chapter 1 

Introduction 

1.1. Motivation 

Ionic liquid electrospray sources are a unique type of spacecraft micro-propulsion 

which have performance versatility linked to directly to the tailorable liquid and electrical 

characteristics of the ionic liquid (IL) propellant. Inherent to their operation, these 

propulsion devices need a backbone structure (capillary needles, solid needles and porous 

emitters) both to enhance the electric field, and to deliver the IL to the location with an 

enhanced electric field. Sources using each type of emission structure have been 

extensively characterized based on the propellant fluid properties and composition.[1-5] 

However, the preparation of these structures is often time-consuming and costly,[4, 6, 7] 

and the lifetime of a source is limited to how well the structures maintain their 

geometrically sharp features; e.g. just the act of operating a source causes irreparable 

damage to the emission site. [8-10] 

A solution to the challenges associated with background structures is to eliminate them. 

This is possible if a liquid can act as both the backbone structure and the propellant; a 

ferrofluid placed into a strong magnetic field does just that. The field excites an instability 

in the fluid called the Rosensweig instability. The result is an array of small peaks that are 

remarkably similar to the structures traditionally used for electrosprays.[11] An ionic liquid 

ferrofluid (ILFF) developed in 2011 achieves the same ‘spikey’ phenomenon and has near-
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zero volatility thus making it suitable for in-space electrospray applications.[12] This 

structure-free ILFF electrospray source was first demonstrated by King et al. in 2013,[13] 

and validated the dual-purpose use of ferrofluids in propulsion; specifically, as an 

electrospray emitter site and as an electrospray propellant. The demonstration provides 

motivation to continue to study the individual effects of the nanoparticles and the magnetic 

field on traditional electrospray using the novel ILFF propellant.  

1.2. Aim and Scope 

The main difference between work reported here and work that has been reported in 

hundreds of prior publications on electrospray is primarily that the fluid contains 

nanoparticles and a magnetic field is used to impart stress to the fluid via these 

nanoparticles—thus the spray behaves differently than ‘classical’ electrospray.  The goal 

of this research was to (1) separate the effects of magnetic nanoparticles from the effects 

of magnetic stress on the stable operation of an ILFF capillary source, (2) separate the 

effects of magnetic nanoparticles from the effects of magnetic stress on the electrospray 

beam structure of an ILFF capillary source, (3) separate the effects of magnetic 

nanoparticles from the effects of magnetic stress on the mass-to-charge of masses emitted 

from an ILFF capillary source, (4) characterize the emission current from a structure-free 

electrospray source, (5) measure the mass-to-charge ratio of charged species emitted from 

a structure-free electrospray source.  

The scope of this work was to measure several performance characteristics of the ILFF 

capillary electrospray source (CES) with and without a magnetic field applied to the source. 
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Specifically, the onset potential, emission current, extraction potential and flowrate (in this 

work, I will use flowrate to mean volumetric flow rate) that define the stability island of 

the CES, and the divergence, energy, and the specific mass composition of the emitted 

electrospray beam were all measured with and without a 200-Gauss magnetic field applied 

to the source. Other characteristics typically associated with performance of a thruster, 

including the measurement of its thrust, specific impulse, and efficiency, would help define 

the potential of the CES in the propulsion arena but were not in the scope of this work.  

Also in the scope of this study was defining the liquid and electrical properties of the 

propellants. The surface tension, viscosity, and electrical conductivity of a propellant each 

influence different parameters of the electrospray emission, such as onset/extraction 

potential and emission current. Each of propellant properties were measured and/or 

interpolated for all propellants used in the study. The relative permittivity of each of the 

ILFF-based propellants was not measured. Relative permittivity of an electrospray 

propellant can affect the emission properties, including emission current and onset 

potential. However, the device required to measure permittivity was not available for this 

work and therefore out of the scope of this study. 

The in-scope characteristics that were measured differed between each of the 

propellants used in the study. The lower flowrate and extraction potential boundaries of the 

stability island for a magnetic-field-free electrospray were only measured using the neat IL 

(pure ionic liquid that is free of nanoparticles) and ILFF-based propellants. The upper 

boundaries of flowrate and extraction potential of magnetic-field-free electrosprays using 

the neat IL or ILFF-based propellants was out of the scope of this study, as were the 
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measurement of any of the flowrate or extraction potential boundaries of the magnetic-

field-free ILFF electrospray. 

Onset potential as a function of magnetic field strength was only measured for the 

parent ILFF propellant, and the lower flowrate boundary of the stability island during 

magnetic field application were only defined for the ILFF-based propellants. Onset 

potential and upper limit of flowrate of for stable electrospray during the application of a 

magnetic field application for each of the different ILFF propellants were not measured, 

nor were any stability island boundaries of the parent magnetically-stressed ILFF. These 

measurements are necessary to assess how the magnetic stress affects the electrospray’s 

full stability envelope, a useful metric in electrospray performance, however they were out 

of the scope of this work.  

The measurement of the beam divergence, the center-axis beam energy, and the 

specific mass-to-charge of the emitted particles in the center of the electrospray beam of 

magnetic-field-free and magnetically-stressed electrosprays using neat IL and ILFF 

propellants were all in the scope of this study. They provided an estimate of the 

efficiency lost due to the off-axis trajectories, the partial-acceleration and/or the 

polydispersity of the emitted particles, and an assessment of the effect magnetic stress 

had on the beam structure.  However, the measurement of these three characteristics 

using the parent ILFF was out of the scope of this study, as was angular-resolved beam 

energy and angularly-resolved specific mass-to-charge of the electrospray beam. The 

latter two are items of interest for this research, as the magnetic stress could affect the 

energy and mass distributions at higher angles from the center beam axis. However, this 
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required some means to rotate the electrospray source and source magnetic field in 

tandem relative to the diagnostics bench. The construction of which was out of the scope 

of this work and consequently angularly-resolved beam diagnostics.  

Also, varying magnetic field strength while measuring emission current, stability 

island, beam divergence and energy and specific mass-to-charge of particles in the beam 

would be of interest to this research as it may reveal trends in each of these measurements 

with respect to the magnitude of magnetic field. However, this too was out of the scope 

of this study. 

The last items in the scope of this research involve a separate electrospray source that 

intended to expand on the structure-free ILFF electrospray research. This included the 

construction of a source capable of creating a single ILFF peak of the Rosensweig 

instability (RP-ES) and measurement several performance characteristics of the source, 

specifically the emission current, and the mass flowrate and mass-to-charge of the emitted 

particles in the electrospray. However, as with the CES, the measurement of many other 

characteristics of performance, including (but not limited to) thrust, specific impulse, and 

efficiency were not in the scope of this work and thus not measured. Also, the measurement 

of particles with specific mass-to-charge greater than 5,000 amu/e would be of interest to 

this research as it would help determine the emission mode (pure ion, ion/droplet) of the 

RP-ES. However, the measurement was not viable using the mass spectrometer available 

during RP-ES development, and therefore not in the scope of this study. Lastly, angularly-

resolved beam diagnostics of the electrospray from a Rosensweig peak is necessary to fully 

understand and characterize the new source; this includes beam divergence, beam energy, 

and beam composition. However, this was outside of the scope of this work. 
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1.3. Structure of Document 

The structure of the rest of this dissertation follows the process I took to first learn and 

understand the potential of backbone-free ferrofluid peak emitters within the current 

electrospray propulsion field, all the way to the final realization of a measuring the specific 

m/q of the electrospray beam emitted from one of these peaks. As such, Chapter 2 begins 

the dissertation with a literature review of the necessary pieces of this research, including 

electrospray and electrospray propulsion, ferrofluids, and the physics within each.  

With grounding in the current state of the art in electrospray measurement and the new 

ferrofluid propellant used in this work, Chapter 3 continues the dissertation by describing 

the equipment and facilities used in this research, including a single-emitter capillary 

electrospray source designed to exploit the magnetically-susceptible propellant, the 

vacuum and time-of-flights facilities at Michigan Technological University and the Air 

Force Research Laboratory at Kirtland AFB. It concludes with the properties of all the 

propellants that were used in this research. 

Chapters 4 begins the first of four chapters which examine the high-conductivity ILFF 

propellants. Since no prior research exists in which they were used for magnetic-field-free 

or magnetically-stressed capillary electrospray, the goal of the chapter was to determine 

the stability island of the electrospray source running on all the ILFF propellants. This 

included adding the external magnetic stress to the source during operation. Chapter 5 

presents the setup and results from two diagnostic experiments – beam divergence and 

stopping potential – which used the newly defined stability island of the capillary source. 

This goal of the diagnostics was to understand how the electrospray beam changed when 
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using propellants with different concentrations of nanoparticles, or when adding a magnetic 

stress to the operating source. Chapter 6 presents the experiments used to examine the 

emission products from the magnetic-field-free and magnetically-stressed electrosprays 

using a time-of-flight (TOF) mass spectrometer. The goal of which was to determine the 

mass and charge emitted particles in the electrospray and understand how nanoparticles 

and magnetic stress influenced their emission. 

The material of Chapter 7 is presented as the final research chapter as it includes the 

experiments done using the backbone-free ILFF electrospray source. The results from 

which include the basic operation of the source, and a study of the emission products 

completed using the TOF mass spectrometer. It concludes by comparing the backbone-free 

ILFF peak electrospray source and the two traditional electrospray sources also tested in 

this research: solid needle and capillary. 

Chapter 8 completes the dissertation with a conclusion of all the work presented, and 

includes potential improvements to the experimental approach and possible avenues for 

future research. 
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Chapter 2 

Literature Search and Motivation 

This chapter provides a summary of relevant literature including the challenges of ionic 

liquid (IL) electrospray in spacecraft propulsion, along with the potential for new 

propellants, both of which motivate my dissertation research. The chapter begins with a 

literature review of ionic liquid electrospray propulsion operating parameters for the 

devices used in electrospray propulsion. It continues with an overview of R. E. 

Rosensweig’s ferrohydrodynamics which motivated the use of magnetic fluids in 

electrospray and concludes with the potential for ILFFs in the propulsion field. 

2.1. Electrospray 

Zeleny first showed that an electrostatic field could produce a fine spray of liquid 

droplets, molecules, and/or atoms from liquid meniscus.[14] The process was termed 

Electrospray by researchers and became the approach for multiple arenas of research 

including deposition, mass spectrometry, and spacecraft propulsion. The latter of these 

research arenas came into focus in the 1960s when Krohn developed experiments using 

liquid metals and viscous liquids, like glycerol.[15, 16] A pitfall of glycerol was its low 

conductivity, a characteristic that was poor for creating a high-impulse thruster inherent to 

low-thrust and low-power space propulsion. Soon after Perel et al.[17] developed a thruster 

using high-conductivity fluids H2SO4 and cesium which created high-specific impulse (Isp) 

electrosprays comprised solely of ions; however, the liquids posed a health-hazard to the 
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researchers. The idea to use ILs as propellants that came in the early 2000s and solved 

some of the challenges and hazards of their predecessors.[1, 18, 19] Ionic liquids can be 

tailored to fit a variety of applications, including those requiring high-conductivity and 

low-volatility, and health hazards of the liquids are easily subdued in a laboratory 

environment.[20] As such a review of ILs with respect to spacecraft electrospray 

propulsion is the perfect avenue to determine where new propellants fit into the arena, e.g. 

the ferrofluids used in this research. However, first an overview of the underlying physics 

of electrosprays is necessary to properly understand the benefits of ILs and alternative 

propellants. 

The electrospray phenomenon occurs through the imbalance of surface tension, ST , 

and electrostatic stress, E , on a liquid’s surface. Figure 2.1. a) illustrates the force balance 

on the liquid surface which produces the electrospray. Electrostatic stress comes from an 

electric field being applied to the liquid’s surface, (2.1). The surface tension stress is 

inherent to the internal energy of the liquid meniscus, and can be related to the geometry 

of the liquid meniscus, (2.2). 

2
0

1
2E E   (2.1)

1 2

1 1
ST R R

 
 
    

(2.2) 
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Figure 2.1. a) Force balance on the meniscus of a fluid-vacuum interface in an electric field. 
b) Geometry of a Taylor cone formed at the critical point when electric stress overcomes

surface tension (onset) denoting the Taylor cone half-angle. 

G.I. Taylor determined in his classical papers that upon the application of electric field

the meniscus will deform along the direction of the field.[21-23] When a sufficient field is 

applied to the meniscus, the radii of curvature for the meniscus become infinitesimally 

small, R1(z) and R2(z) for z equal to apex height, and the meniscus deforms into a conical 

in shape with a half-angle 49.3T  , Figure 2.1. b). Realistically, the meniscus radius 

cannot decrease below the nanoscale range. Instead, the increase in electric field elicits an 

emission of charge from the cone apex via a jet of charged particles, i.e. electrospray 

ionization onset.  

Prewett and Mair and have shown that an estimate of the potential to induce onset, 

Vonset, for electrospray emitters is a function of the extraction distance, dext, the capillary 

diameter, dc, and   of the propellant, (2.3).[24]  
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(2.3) has an inherent problem in that it assumes the radius of the liquid emitter is 

constant. However, the application and increase of an electric stress to the liquid meniscus 

and the opposing surface tension stress reduces the radius of the emitter apex. Therefore, a 

better model of Vonset requires a continuous change in radius caused by these competing 

stresses. Krpoun and Shea attempted to reconcile this continuously shrinking apex radius 

by solving the apex electric field over a series of liquid menisci, varying in apex radius, 

ra.[25] The resulting model of  Vonset in of an electrospray in ionic mode as a function of 

the ratio between electric field, , ,a ξE and potential, ξV , used in the their FEM solution, 

,a ξ ξE V  ,  , and ra: 

0

1 4
onset

a

V
r


 
 (2.4) 

Also in their study, Krpoun and Shea also found that Vonset was lower for emission cones 

that had half-angles larger than the Taylor cone angle (49.3°). Vonset will be useful in 

assessing the benefits using the alternative propellants presented in this dissertation. 

For potentials greater than the onset potential the meniscus will emit a continuous jet 

of particles and charge.  The mass flow and current of the resulting jet and its dependence 

upon fluid and electrical parameters has been studied extensively; three groups that have 

studied the scaling laws of electrosprays extensively are Fernández de la Mora and 

Loscertales in 1994,[26] Gañán-Calvo et al. in 1997,[27] and Chen and Pui also in 

1997.[28] The former group analyzed the emission of various polar fluids to empirically 

determine that the droplet radius scales as, 
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1 3
00.5( )D rR Q K  , (2.5) 

and the current emitted from an electrospray source scales as, 
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 0ξ I    , (2.8) 

and 

    1/2
0Q rKQ       . (2.9) 

 rf   is known as the Fernández de la Mora constant, Q , is the dimensionless flowrate 

parameter, and   is dimensionless current. Both Gañán-Calvo et al. and Chen and Pui 

expanded on Fernández de la Mora and Loscertales’ model, with the former defining 

  6.46r rf    for electrosprays with jets having lengths much less than other geometric 

length of the Taylor cone, and the latter defining 

  1/6 1/6336 157 0.21 449r r r rf         for electrosprays with jets on the order of the 

capillary diameter. Furthermore, in the study by Gañán-Calvo et al. they determined that 

the dimensionless parameter that governed liquid acceleration process, 1/3
  , was 

ultimately responsible for spray current and droplet size. In the parameter, 
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Gañán-Calvo et al. found that for 1/3 1    or  1/3 1O   , the droplet size and 

spray current scale as RD ~ Q1/3 and I ~ Q1/2, respectively, whereas if 1/3 1    the droplet 

size and spray current scale as RD ~ Q1/2 and I ~ Q1/4, respectively. The overall conclusion 

of the studies is that both viscosity and conductivity are highly influential on the scaling of 

current and droplet size of the electrospray. This will be examined further during the 

discussion on emission current using the new ILFFs used in the research presented in this 

dissertation (Section 4.3.3.b.). 

Beyond the Taylor cone-jet region of the electrospray exist the emission products 

which take the form of ions and/or droplets. Lord Rayleigh found that the size of the 

droplets emitted from the jet can also be determined through an examination of the 

coulombic stability of the droplets, i.e. the balance of electric stress, caused by charge 

density of the droplet, and surface tension holding a droplet intact. He found that the upper 

limit of charge that a droplet of fluid can hold prior to splitting is (2.12).[29] 

max 3
08D Dq R  (2.12) 

Termed the Rayleigh limit, (2.12) can be rearranged to determine the droplet diameter, 
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As mentioned previously, the droplet diameter was found to scale as (2.5).  Therefore, 

the flowrate and Rayleigh limit are useful in determining the size of emitted droplets in 

electrosprays, which becomes relevant when comparing their size to the size of 

nanoparticles in the ILFFs introduced in Section 2.2. 

In summary, onset potential, emission current, and droplet size of electrosprays are all 

functions of the fluid parameters of the propellant, such as conductivity, surface tension, 

viscosity, and volatility. Ionic liquids (ILs) comprise a large family of fluids which are 

defined by their composition, i.e. equal parts anions and cations. With a vast selection of 

combinations of anion-cation pairs to choose from, the properties of an IL can be tailored 

to fit different electrospray applications. [20] For example, high conductivity fluids 

produce small jets and small droplets or even ions.[18, 30] It is also possible to produce 

ILs with both high conductivity and negligible volatility, which would be suitable for 

electrosprays in a vacuum environment; e.g. electrospray propulsion.[1, 3, 18, 31-33]  

2.1.1. Ionic Liquid Electrospray Propulsion 

Gamero-Castaño and Hruby were the first to demonstrate the use of a high-

conductivity, low-volatility IL as an electrospray propulsion propellant.[18] Their system, 

termed capillary electrospray, fed the IL 1-ethyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide (EMIM-NTf2) through a 50-μm inner diameter fused-

silica capillary tube to a needle apex that was sharpened to a cone; the capillary was coated 
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with a conductive layer of tin-oxide.  They found that the electrospray emitted with a 

relatively low Isp of 126-171 seconds, an average mass-to-charge ratio of 100,000-150,000 

amu/e, and with a mixture of ions and droplets. Furthermore, they determined that large 

polydispersity of emission effectively lowered thruster efficiency by 25-percent.  

Hruby and Gamero-Castaño continued expanded on this original by fabricating and 

demonstrating a 9-emitter array for Busek Co. Inc, which provided 5-30 μN of thrust using 

the EMIM-NTf2 propellant. They are the first flight electrospray thrusters, launched on the 

NASA/ESA LISA Pathfinder mission, ST7 in 2015. 

Since these first demonstrations of electrospray used for propulsion, other groups have 

developed their own method to produce and extract various propellants via electrospray. 

Romero-Sanz, Bocanegra, Fernandez de la Mora and Gamero-Castaño also used a capillary 

needle electrospray source (20- or 40- μm inner diameter), but the propellant was a higher 

conductivity IL, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4).[34] Lozano’s 

group at Massachusetts Institute of Technology developed both planar and rectangular 

arrays of porous emitters through a myriad of MEMS processes using materials such as 

tungsten, silica, and carbon xerogel.[2, 35-38]  

Though the heritage of these types of thrusters appears sound, they do have obstacles, 

including clogging,[1] emitter or propellant degradation,[30, 39] and arcing events,[9, 10, 

40, 41] each of which could prove disastrous for multi-year in-space missions. Researchers 

have accounted for most of these obstacles, (prepping procedures to prevent clogging of 

foreign materials, and alternating bias and distal electrodes to mitigate degradation), but 

the underlying cause of them stems from the emitter structures necessary for the 
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electrospray process. They are typically small, relatively sharp features, which provide 

geometric enhancement to an applied electric field, and lower the electric field strength 

required for extraction. Due to the complexity in their fabrication, these emission structures 

are time-consuming and costly to produce. Furthermore, their size and aspect ratio makes 

them inherently fragile to contact or arcing. While the time and cost to fabricate these arrays 

have been reduced by an order of magnitude thanks to newer technologies, the fragility 

remains an issue. The new technology developed at Michigan Tech uses ILFF as both the 

propellant and support structure that could provide an alternative technique which may 

avoid the inherent fragility of emitters in literature. However, a sound comparison between 

the neat IL and ILFF electrosprays technologies is necessary to understand the impact that 

ferrofluids would have on current techniques; this is the primary motivation for this 

research.  

2.1.2. Angular Divergence of Electrospray Beam 

A beam of charged particles has inherent self-repulsion forces which induces uniform 

radial spreading away from the central axis of the electrospray, Figure 2.2. Beam spreading 

is undesirable for an electrospray thruster as the resultant radial components of thrust 

cancel, while the process of accelerating the particles still consumes power. The radial 

component of thrust, Tr, is easily related to the angle of the beam divergence, B , via

( v)sin i
rr B

d mT e
dt

  , where the derivative term is the time-rate of momentum change of 

the particles in the electrospray beam; B is also a dependent term in the beam divergence
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efficiency of a thruster.[42] As such, the measurement of B is of interest to any research

related to propulsion.  

Figure 2.2. Divergence of the emitted beam in a uniform electrospray. 

Multiple diagnostic tools exist to measure beam divergence ranging in collection 

method and angular resolution. Lozano developed a current collector comprised of 10 

concentric rings (largest had a 6-cm diameter) and a one center circular plate to measuring 

beam spread and focusing.[1] He found that the collector needed to be positioned relatively 

close to the source (within 7-cm) to collect the majority of the electrospray beam. Prince’s 

group at the Air Force Research Laboratory attached their capillary electrospray source to 

a rotatable platform such that it could rotate ±45° in the vertical plane.[43] Similarly, a 

Massachusetts Institute of Technology team led by Gassend developed a method of rotating 

their array of electrospray emitters to measure divergence of the beam.[7] The advantages 

of these setups over Lozano’s was their ability to gather current profiles over a large 

angular range without requiring the close proximity of the diagnostic tool to the source. 

However, rotation requires a dynamic device that can be cumbersome. Therefore, the 

device used for experiments presented in this dissertation had a design similar to Lozano’s 

setup to reduce complexity. 
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2.1.3. Energy of Electrospray Beam 

Another important characteristic of an electrospray is the kinetic energy of the charged 

particles (hereon referred to as ions) that comprise the beam. In a perfectly accelerated 

electrospray beam, the kinetic energy of any ion, 21
2 i im v , is equal to the input electric energy 

of the extraction region, exteV . However, it is well known that perfect acceleration of all 

particles in an electric propulsion device does not occur.[42] This excess power to the 

system results in what is defined as the voltage utilization efficiency, V , and is actual 

energy imparted to ion during their birth and acceleration to the total input energy of the 

electrospray extraction region, 

21
2 ion

V
ext ext

m v
eV eV

  


. (2.14) 

In (2.14), ion  is the most probable ion kinetic energy. Since kinetic energy is directly 

related to the distance the ion travelled through the extraction field, (which has a maximum 

potential of extV ), ion  will always be less than or equal to extV . 

The quantity ion  is typically measured using what is called a retarding potential 

analyzer (RPA). A description of RPA function is presented in Section 5.2.2. Variations of 

RPAs have been designed and tested for electrospray devices. Miller et al. used a set of 

three grids each in line with the far-field electrospray beam axis and measured the potential 

required to block ions from entering the main detection unit of their time-of-flight (TOF) 

mass spectrometer.[43]  Lozano used a similar method in a linear TOF mass spectrometer 

wherein two parallel grids were placed before the TOF collector and biased to an increasing 
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potential until zero current was measured.[1] Most recently a spherical RPA was developed 

by Miller et al. to measure the fragmentation rates of ion clusters.[44] Her design was 

specifically crafted to simultaneously capture particles emitted at high-angles by using 

large-diameter, curved grids, while also mitigating IL buildup on the RPA grids (a common 

failure mechanism of RPAs when measuring IL electrosprays) by using grids with large 

open-areas. Therefore, the RPA designed for experiments presented in this dissertation 

followed Miller’s approach to mitigate IL buildup, but used small grids that only measured 

the center axis due to space limitations. 

2.1.4. Polydispersity of Electrospray 

Polydispersity i.e. multiple ion species and droplet populations, of the products created 

by an electrospray thruster is reportedly the most influential to thrust efficiency.[1] 

However, an electrospray that emits polydisperse particles, is not inherently undesired. 

Having an ability to throttle the emission from an electrospray from pure ion (few ion 

species) to mixed ion/droplet (polydisperse) to pure droplet (one or two droplet 

populations) provides flexibility in the amount of thrust (or specific impulse) the source 

can provide.[1, 3, 33] Therefore, a measurement of the polydispersity of an electrospray 

beam is of interest when developing source with new propellants or, in the case of this 

study, added body forces (magnetic field). 

A stepping stone in determining polydispersity is measuring the size of particles within 

a part of an electrospray beam. One method to determine just that is called mass 

spectrometry. In this technique, the m q  values of an electrospray are measured using a 
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couple different types of mass spectrometers (time-of-flight or quadrupole), which results 

in spectra denoting the relative fraction of the emitted ion and droplet species within the 

beam. As such, mass spectrometers are well established in the electrospray community.[2, 

4-7, 33, 45-51]  

Within the field of electrospray propulsion, time-of-flight mass spectrometers (TOF-

MS) are most common, though their design and function vary. Gamero-Castaño and Hruby 

used a linear TOF-MS setup which measured the current of the electrospray beam using a 

collector-plate read by a fast electrometer and recorded via an oscilloscope that was 

triggered by the voltage signal of the electrospray needle to measure EMIM-NTf2 and 

formamide and tributyl phosphate.[18] The same device was used by Romero-Sanz et al. 

and Garoz et al. to study 1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMI-BF4) and 

high surface tension ILs, respectively.[34, 52]  K. L. Smith and J.P.W. Stark at Queen Mary 

University have a similar TOF-MS setup and have collected spectra from several types of 

sources running the IL EMI-BF4.[40, 53, 54] While these devices were useful in 

confirming the polydispersity of IL electrospray beam, the resolution is limited to the 

energy spread of the emitted particles. Furthermore, larger m/q species are often 

indiscernible due to the low signal relative to lighter ions and droplets.  

Lozano built a dual electrostatic-gate TOF-MS with an electrostatic mirror to correct 

for the energy spread observed in the previous devices.[1] The electrostatic gates were 

normally closed and opened for very short intervals to ensure the electrospray beam only 

entered the TOF drift tube during collection of spectra. The length of the pulse which 

opened the gates defined the resolution of the spectra. Also, the electrostatic mirror 
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provided the means to separate the particles based on their accelerating potential, further 

increasing the resolution of the detector by eliminating the energy spread of each 

ion/droplet species. The dual gate design allowed the instrument to collect only those 

particles within a select range of flight times by delaying the pulses of each gate by a known 

time. The device was capable of high-resolutions mass measurements ranging of single ion 

species (<1000 amu) as well as the collection of droplet distributions.[1, 55] Chui et al. 

used a similar TOF-MS that had a dual-gate sans the electrostatic mirror and realized 

similar capture of ion species in their mass spectra.[33] These devices, while an upgrade 

from those used by Gamero-Castaño and Hruby, and K. L. Smith and J.P.W. Stark, still 

lacked the capability of measuring of discriminating larger m/q particles (i.e. droplets 

distributions). The size of the NPs in the ILFFs developed for this research are similar to 

typical IL droplets sizes expected in capillary IL electrospray (30-nm-diameter and 10- to 

100-nm-diameter, respectively), which are in the range of 40,000-200,000 amu/e.[26, 56] 

Therefore, since a goal of this research was to discern the NPs from other species within 

the electrospray beam (IL ions and/or droplets), a different mass spectrometry technique 

was required. 

In 2014, Prince’s group at the AFRL at Kirtland AFB developed a method to measure 

the m/q >10,000 amu/e using their orthogonal TOF-MS.[57] The device is unique 

compared to the others previously described; instead of pulsing an electrostatic gate and 

measuring the TOF of the electrospray beam that makes it through in the pulse-time, the 

AFRL device slows the emitted electrospray to thermal velocities within a set of pulsing 

plates orthogonal to the electrospray beam axis, where they are then extracted into the flight 

tube located orthogonal to the beam axis by pulsing one of the two plates (see Figure 3.8. 
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of 3.6). The device could discriminate multiple droplet distributions within an BMIM-DCA 

and EMIM-NTf2 electrospray in the mass range of 10,000 amu/e to 200,000 amu/e while 

maintaining high resolution collection of ion species in the sub-5,000 amu/e range.[58] The 

functionality of the AFRL orthogonal TOF-MS was what prompted its use for measuring 

the new ILFF electrosprays, which were believed to have both ions, droplets, and NPs.[46] 

Having reviewed electrosprays used in space propulsion, the parameters that drive 

them, and the methods to test their performance in a laboratory setting, I will now review 

the necessary material that pertains to the new ILFF propellants used in this research. This 

includes an overview of ferrofluids and their synthesis, the basic physics attributed to 

electromagnetic interaction with the surface of these fluids, and the potential for their use 

in spacecraft propulsion.  

2.2. Ferrofluids and the Rosensweig Instability 

The first ferrofluids were developed by S.S. Papell in 1965, though the materials and 

technology have been available for millennia.[59] They are formed by suspending single-

domain magnetic nanoparticles in a carrier liquid; the resulting fluid is susceptible to 

magnetic fields. The particles are of such small size—on the order of 10 nm—that 

Brownian motion prohibits sedimentation caused by external body forces.[45] 

Additionally, the are coated with a polymer surfactant to prohibit clumping. These qualities 

make ferrofluids applicable in multiple arenas including engineering (for damping in 

speakers, heat transfer, and bearings);[45, 60, 61] biomedical (for drug delivery, 
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hyperthermia, in vitro applications and within MRI machines);[62-64] and more recently 

propulsion, specifically, ionic liquid ferrofluid (ILFF) electrosprays.[13, 46]  

The following subsections describe the techniques used to create ferrofluids, including 

the synthesis of our unique ILFF. This is followed by an overview of Rosensweig’s work 

on the physics that govern ferrofluid that has been placed in a within a magnetic field. Both 

are necessary to understand our motivation to use ILFF in space propulsion applications, 

which is discussed in the concluding subsection of this chapter. 

2.2.1. Synthesis of Ferrofluids 

To prepare a suitable ferrofluid for specific applications involves two components, the 

creation of monodomain and monodisperse nanoparticles, and the selection of a carrier 

fluid and polymer coating which stabilize the particles in the fluid. Two primary methods 

are used to create a ferrofluid, size reduction and chemical precipitation.[11] The first 

method of size reduction was discovered by Papell and was accomplished through wet 

grind of material using a surfactant for 100s of hours. Rosensweig, Nestor, and Timmins 

enhanced the process by perfecting a way to create a monolayer surfactant coating, 

definitively measuring the particle size, and developed a method to remove oversized 

particles.[65] Rosensweig and Kaiser went a step further by developing a method to 

disperse particles in other solvents including water and hydrocarbons.[66] A benefit of the 

size reduction process is bulk synthesis of ferrofluids. The method for chemical 

precipitation to create ferrofluid typically requires a soluble metal salt and a coprecipitate 

(NaOH or NH4OH) to be mixed to start precipitation, followed by a peptization step to 

exchange particles from an aqueous phase to an organic phase using a dispersant.[11] 
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Multiple groups have produced fluids with water and oil as the carrier liquid using both 

methods of synthesis.[60, 67-70] Also, Jain et al. was the first to demonstrate aqueous 

ferrofluids that would ‘spike’ when subjected to a magnetic field.[70] All of these fluids 

were decent for simple demonstrations at atmosphere, but lacked a critical requirement to 

use them as electrosprays in a vacuum: low vapor pressure.  

In the early 2010s several groups produced viable fluids with low vapor pressures by 

using an ionic liquid as the carrier fluid; Hawkett et al. and Mestrom et al. used iron oxide 

particles,[12, 71, 72] and Huang and Want used cobalt ferrite particles.[73] Hawkett and 

Jain of the University of Sydney demonstrated sterically-stabilized ionic liquid ferrofluid 

by incorporating a thin coating of short acrylic acid-b-acrylamide copolymer (AA10-b-

AM14) on ~10-nm diameter γ-Fe2O3 particles in 1-Ethyl-3-methylimidazolium acetate, 

EMIM-Ac, and Ethylammonium nitrate, EAN.[12] This led to a collaboration between 

Hawkett and Jain of the University of Sydney, and Meyer, Hopkins, and King of Michigan 

Technological University that resulted in a similar ionic liquid ferrofluid using 1-Ethyl-3-

methylimidazolium bis(trifluoromethylsulfonyl)imide, EMIM-NTf2 as the carrier 

fluid.[13] Multiple batches of the EMIM-NTf2 ferrofluid were prepared using Sirtex 

maghemite nanoparticles and the block copolymer poly(MAEP10-b-DMAm60) at varying 

weight-percent of components. Table 2.1 lists four of the batches labelled NJ397028, 

NJ397047, NJ397074, and NJ397091 created for the Ion Space Propulsion Laboratory. 

The significance of the ILFFs in Table 2.1 is their ability to produce ‘spikes’ along the 

surface when subjected to an external magnetic field. The phenomenon is essential to their 

use as emission sites for electrospray propulsion, and would replace the state-of-the-art 
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solid backbone emission sites. The phenomenon was studied extensively by R. E. 

Rosensweig and will be reviewed in the next subsection. 

Table 2.1. Properties of Ionic liquid ferrofluid batches synthesized by Hawkett and Jain. All 
ferrofluids use EMIM-NTf2 as the carrier liquid. 

Batch No. 
Fe2O3 

% (w/w) 
Polymer 
% (w/w) 

Ionic Liquid 
% (w/w) 

NJ397028 27 3.9 69.2 
NJ397047 27 4.5 68.5 
NJ397074 26.3 3.9 69.8 
NJ397091 26 4.6 69.4 

2.2.2. The Rosensweig Instability and Ferrohydrodynamics 

Subjecting a ferrofluid to a strong magnetic field causes the magnetization of the 

nanoparticles to align with the magnetic field. Perturbations along the surface of the colloid 

cause local concentrations of the magnetic field. The concentration of the magnetic field 

attracts the nanoparticles and an instability forms that causes the liquid to bulge at the 

locations of concentrated magnetic field known as the Rosensweig instability.[11, 67] The 

instability is balanced by the surface tension of the fluid which pulls against this change in 

the liquid surface. The result is an arrangement of static fluid peaks on the surface of the 

ferrofluid, Figure 2.3. R. E. Rosensweig studied the physics behind the instability shown 

in Figure 2.3. along with the physics of other fundamental phenomena observed when using 

ferrofluids in his book Ferrohydrodynamics.[11] I will detail some of his findings below 

as they pertain to the ILFFs used and experiments conducted in this research.  
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Figure 2.3. The surface of a hydrocarbon-based ferrofluid after application of a divergent 
magnetic field. The magnetic field induces Rosensweig instability forming an arrangement of 

static liquid peaks along the liquid surface. 

In his text, Rosensweig determined the magnetic stress tensor, Tm, that acts on a 

ferrofluid due to the magnetic field. 
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In (2.15) he defined two terms which will elucidate the stress balance that forms the 

peaks of the Rosensweig instability. The first is termed the magnetostrictive pressure, sp , 

and is equal to, 
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The second term is the fluid-magnetic pressure, mp , which is equal to, 

0 0

H
mp MdH  . (2.17) 

Using the terms of (2.15) Rosensweig developed an augmented form of the Bernoulli 

equation which includes the terms for an ferrofluid within a magnetic field: 
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Reexamining the fluid meniscus of Figure 2.1 and substituting the magnetic field for 

the electric is useful in determining the boundary conditions for (2.18) to complete the 

definition of the ferrohydrodynamic Bernoulli equation. The stress tensors express the 

stress of the volume on either side of the interface, the boundary conditions for the 

ferrofluid meniscus is found to be,  

ˆ m s n cp p p p p p     . (2.19) 

cp is the capillary pressure equivalent to SurfaceTension  of (2.2), and np is a newly derived 

term called magnetic normal traction which is induced by the magnetic field stressing the 

boundary, 2
0 2n np M ; this boundary condition provides an avenue to examine the 

stresses acting on a ferrofluid surface specific to a magnetic field. Combining 

electrohydrodynamics and ferrohydrodynamics reviewed in this chapter results in a unique 

stress balance that illustrates the complimentary nature of the two fields, Figure 2.4. 

Figure 2.4. Force balance on the meniscus of a fluid-vacuum interface in both an electric 
field and a magnetic field. 
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The specific stresses related to Electric , Magnetic , SurfaceTension , and pressure are combined 

into a single stress balance for a static meniscus, 

2 2
0 0 0 00 0

,

1 1 2ˆ
2 2

υ
υ

H H

H T

Mp E MdH dH M p
R
γε µ µ µ∂ + + + + = + ∂ ∫ ∫ .  (2.20) 

Studies on the combined effects of electric and magnetic fields on ferrofluids include 

examinations of dielectric micro-drops within magnetic fluids,[74, 75] and droplet shapes 

of the ferrofluid.[13, 76-78] Other studies which used the combined fields to induce 

electrospray were completed by King’s group at Michigan Tech, F. de la Mora’s group at 

Yale University, and Dikansky’s group at Stavropol State University. The findings in each 

of these studies hint at the complexity of electromagnetically-manipulated ferrofluid. As 

such, to properly understand the nature of these systems the specific effects that the two 

EM fields have on a ferrofluid must be isolated and individually analyzed. This was the 

primary motivator for research completed in this study. 

2.2.3. Potential of Ionic Liquid Ferrofluids in Electrospray Propulsion 

The initial motivation to use ILFFs for electrospray propulsion came from a 

manufacturing standpoint; as shown in Figure 2.3. the Rosensweig instability creates peaks 

that are remarkably similar in size and layout of the multi-tip arrays used by several 

electrospray groups.[32, 35, 36, 53, 79, 80] A case can be made that the nearly 

instantaneous formation of a Rosensweig instability could eliminate the time and cost 

associated with fabricating the arrays of emitters typically used in electrospray.  
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The potential of ionic liquid ferrofluids as electrospray propellants in traditional 

sources will depend on how the magnetically-susceptible fluid influences the specific 

characteristics of performance as discussed in Sections 2.1.2. - 2.1.4. The fluid itself 

presents a feature that is new to electrospray propulsion: suspended magnetic 

nanoparticles.  The size of the NPs are known to be on the order of droplet populations, 

and Taylor jet diameter of IL electrosprays.[3, 13] As such, ferrofluids produced using 

these NPs in a magnetic-field-free spray could influence both formation of and emission 

from the cone-jet structure, and consequently the electrospray beam structure and 

composition. Furthermore, because the NPs could potentially be emitted in the 

electrospray, tailoring the NPs in either size or concentration would provide a direct means 

to vary the thrust-to-power or specific impulse of a device using the fluid.  

The magnetic susceptibility of ILFFs is the other characteristic that is potentially useful 

to traditional electrospray propulsion devices. Applying a magnetic field to a ferrofluid is 

already known to influence the shape of the surface, which could be beneficial if the shape 

change complimented the formation of the Taylor cone, thus reducing the electric field 

necessary to induce electrospray. The magnetic influence on the surface of the emission 

structure could also influence the electrospray beam structure and composition, thus 

providing another means to alter the performance of the source (for better or worse) by 

changing beam divergence, beam energy, and/or polydispersity of the emitted particles. 

Additionally, an applied magnetic field could affect the post-emission products of the 

electrospray. For example, the trajectory of magnetic NPs would be more susceptible to 

Lorentz force caused by an axial magnetic field than a normal charge particle of similar 
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size; furthermore, an axial or radial field could also reduce the effects of the surface 

instabilities on the electrospray jet, potentially changing the size of droplets.[11, 81] 

Presented with the potential for ILFFs in electrospray propulsion illuminates the 

motivation for research presented in the remaining chapters of this dissertation.  
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Chapter 3 

Equipment and Facilities for Capillary 

Electrospray Source Experiments 

This chapter describes the electrospray propellants, the capillary electrospray source, 

and the general facilities and equipment used in experiments on the capillary source. Note: 

specific equipment and diagnostics used in individual experiments are presented in 

chapters respective to the experiments (Chapters 4 through 6). Also, the ILFF source using 

Rosensweig instability is described in Chapter 7. 

3.1. Propellant Properties 

Eight fluids were used throughout the experiments reported in Chapters 4-7. They are 

the neat IL EMIM-NTf2, two batches of EMIM-NTf2-based ILFF (batch NJ397074 and 

NJ397091), and five solutions of the ILFF with varying concentrations of magnetic 

nanoparticles produced from batch NJ397091. The ferrofluid solutions are henceforth 

called ILFF-10, ILFF-20, ILFF-30, ILFF-40, and ILFF-50 based on the volume percent of 

the parent ILFF that was mixed with neat IL. Batch NJ397091 contained 26.0 wt% iron 

oxide nanoparticles which led to nanoparticle concentrations in the four solutions of 3.04, 

5.98, 8.80, 11.52, and 14.15 wt% for ILFF-10, ILFF-20, ILFF-30, ILFF40, and ILFF-50, 

respectively.  The volumes of neat IL and ILFF, and nanoparticle concentrations that 

comprised each ILFF solution are tabulated in Table 3.1. 
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Table 3.1. Properties of all propellants used in the experiments. 

ILFF Dilution 

Ratio 
ILFF:neat 

IL 

NP in 
ILFF 

(% wt/wt) 

NP in 
ILFF 

(% v/v) 

NP and 
Polymer 
in ILFF 
(% v/v) 

Density 
(g/ml) 

Neat IL 
(EMIM-NTf2) 0:1 0.00 0.00 0.00 1.523 

ILFF-10 1:9 3.04 0.91 1.63 1.55 
ILFF-20 1:4 5.98 1.82 3.26 1.58 
ILFF-30 3:7 8.80 2.73 4.88 1.61 
ILFF-40 2:3 11.52 3.65 6.51 1.63 
ILFF-50 1:1 14.15 4.56 8.13 1.64 

ILFF (NJ397074) 1:0 26.30 9.26 15.37 1.824 
ILFF (NJ397091) 1:0 26.00 9.11 16.27 1.815 

The NPs changed the viscosity, conductivity, and surface tension of the neat IL carrier 

fluid. The viscosity of the parent ILFF was previously reported to have similar viscosities 

as the neat IL.[46] However, measured values for the vial pressure required to produce the 

similar volumetric flowrate using different propellants, shown in Table 4.1, suggests that 

this is not correct. Fluid viscosity, fluid , can be calculated from the Hagen-Poiseuille 

equation given a known flowrate, Q, supply pressure, P, and feed-tube geometry (radius, 

cr , and length, cL ) as shown in (2.1). 

4

8
c

fluid
c

P r
L Q
 

 (2.1) 

Note that even small variations in the cr will greatly affect the calculated viscosity; the 

capillaries used in this research had dimension ±4% of their 37.5-μm-radius, which would 

result in an error of ±16% in fluid . Figure 3.1 a) shows the values of fluid for each 

propellant determined using (2.1); also plotted is the published viscosity of neat IL EMIM-
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NTf2.[82] The addition of 14.15 wt% NPs approximately triples the viscosity of the neat 

IL.  

While the viscosity was proportional to the wt% NPs in the neat IL, the conductivity 

and surface tension of the propellant decreased when NPs were added, as seen in Figure 

3.1.b). The parent ILFF has a measured conductivity of 0.57 S/m and measured surface 

tension of 32.39 mN/m, compared to 0.91 S/m and 36.28 mN/m, respectively, for the neat 

IL.   

Figure 3.1. (a) Viscosity of ILFF solutions based on the weight percent of nanoparticles in 
each solution. The published viscosity of neat EMIM-NTf2 is also plotted and used as the 
zero of the linear fit. (b) Measured surface tension (solid circles) and conductivity (solid 
squares) of neat IL and parent ILFF and interpolated surface tension (open circles) and 

conductivity (open squares) of IL solution as a function of wt% nanoparticles added to the 
neat IL. 

Literature has shown that the effects of NPs on fluid properties varied; specifically, two 

groups demonstrated that surface tension increases with the decrease in NP 

concentration,[83, 84] while several other groups observed a decrease in surface tension 

with increase in concentration of NPs,[85-87] with one that showed a decrease followed 

by an increase in surface tension with an increase in NP concentration.[88] (NPs in 

literature were Al2O3, TiO2, ZrO2, and SiO2). The lack of a conclusive trend between NPs 
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on surface tension meant that extrapolating the both properties shown in Figure 3.1.b). 

would be unjustified, but it is reasonable to assume a linear interpolation between that of 

the parent ILFF and the neat IL, as shown in Figure 3.1 b).  

3.2. Capillary Electrospray Source 

The capillary electrospray source (CES), shown in Figure 3.2, was based on 

apparatuses used by Chiu et al.,[19, 33] Lozano et al.,[1] and Miller et al.[43, 58, 89]. The 

apparatuses in these studies had ionic-liquid propellant fed to the apex of a glass capillary 

needle using either a syringe pump or pressurized vial. The CES included a 0.50-m or 0.75-

m long, 75-μm-inner-diameter capillary needle, with a wall thickness of ~5 μm at the apex. 

The capillary needle had a constant inner diameter, in contrast to tapered-inner-diameter 

needles used in literature, which helped to avoid blockage issues observed in preliminary 

tests.  

Figure 3.2. a) Capillary electrospray source comprised of (1) extractor plate, (2) capillary 
needle, (3) PTFE isolation block, (4) alignment set screws. b) CAD model of the CES. 
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The pressure-feed system described in Section 3.3. fed the IL or ILFF propellant to the 

capillary needle apex. An aluminum extractor plate with a 1.5-mm-diameter aperture to 

induce electrospray emission was placed downstream of the capillary needle apex, a PTFE 

block both held and isolated the needle, and set screws aligned the needle with the extractor 

aperture. 

3.3. Pressure Feed System and Calibration 

The propellant feed-system for the CES consisted of a vial of propellant with two inlet- 

and one outlet- capillary tubes. The openings of the inlet tubes where within the gaseous 

region of the vial, while the outlet capillary tube was inserted into the propellant. Nitrogen 

gas, fed through one inlet, pressurized the vial and induced propellant flow in the outlet 

capillary which fed directly to the needle apex. A mechanical pump attached in-line with 

the nitrogen feed, was used to evacuate the vial. A pressure transducer was attached to the 

second inlet capillary to measure the vial pressure. The desired pressure was achieved by 

systematically opening and closing two precision valves located on the nitrogen line and 

mechanical pump line. A diagram of the system is shown in Figure 3.3. The flowrate of 

the liquid being fed to the capillary source was determined via the bubble method, wherein 

the velocity of a bubble introduced in the feedline was measured for a given vial pressure, 

Figure 3.4. The velocity was then converted to volumetric flowrate using the known 

dimensions of the capillary tube. 
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Figure 3.3. The pressure-feed system used to provide propellant to the capillary electrospray 
source. A propellant vial located outside the vacuum chamber is evacuated using a 

mechanical pump. Pressure is set to be within ±0.1 Torr by filling the vial N2 gas with the 
precision valves. The propellant is biased using an electrode inserted into the vial. 

Figure 3.4. Volumetric flowrate of the six propellants used in this research plotted against 
the pressure of the propellant vial. The flowrate was determined via the bubble method. ‘x’ 

is the slope for the linear fits to the measured data, such that Flowrate (Q) = x * Pressure (P). 

3.4. Helmholtz Coil – Theory and Apparatus 

The need for a variable magnetic field was paramount for the experiments conducted 

in Chapter 4, Chapter 5, and Chapter 6. The testing facilities inhibited quick movement or 
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removal of permanent magnets which would provide the variable magnetic field, therefore 

the only option was to construct an electromagnet. A Helmholtz coil is a unique type of 

electromagnet that provides a uniform, non-divergent field in the volume located between 

to coils, Figure 3.5. 

The field within a Helmholtz coil is easily determined through an examination of the 

Biot-Savart Law for the case of a point in space some distance away from a circular current 

loop. A Helmholtz coil is effectively two identical current loops, or coils, separated by a 

distance, b, along a common axis.  As such the magnetic field H at the center point of the 

coil, / 2z b , is defined as twice that of a single current loop at the same distance, z. 

Figure 3.5. Geometry of a Helmholtz coil showing the resulting magnetic field lines created 
by the two collinear current loops. 

Considering that each coil is comprised of n number of loops, the equivalent current in 

each coil is T H HI n I . Also, the magnetic field strength of the coil, B, is equal to 0H . 

As we’ve already determined that z is the only significant component of the field, the 

magnetic field strength is defined as the magnitude, 
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A uniform field is generated when the two coils are separated by a distance equal to 

half the radius of the coil, a, as determined by the expanded Taylor series of the field 

strength with 0x   located at the central point of the two coils. With b = a, (2.2) is reduced 

to, 
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Two Helmholtz coils, HC-A and HC-B, were designed for the onset and stability 

experiments using (2.3), and were also utilized for the experiments reported in Chapter 5 

and Chapter 6. The radii of the coils were chosen based the facilities (HC-A which needed 

to fit inside the UHV facility, whereas HC-B fit over a 6-inch-flange that enclosed the CES 

that was attached to either the UHV or TOF-MS facilities). Coil separation of both HC-A 

and HC-B was larger than the coil radii. The current, HI , was bound by the power supplies 

available for use in the experiments. Therefore, Hn  was determined by selecting a 

maximum magnetic field strength and rearranging (2.3).  Excess heat was an expected issue 

for both HC-A and HC-B, and necessary measures to cool the coils were included in the 

design. HC-A was lined with multi-layer insulation to reduce radiative heat to the CES, 

and the coil was only powered for short periods of time (on the order of 10 seconds). HC-

B was either water-cooled using a copper-pipe sleeve that fit between the coil and the 

flange, or cooled via forced-air convection using a box fan. HC-B could be powered for 



www.manaraa.com

77 

minutes at a time. Table 3.2 details the specifications for the final design of the two 

Helmholtz coils. 

Table 3.2. Specifications for the Helmholtz coils used in CES experiments. 

Helmholtz 
Coil 

Maximum 
B-field 
(Gauss) 

Maximum 
Current 
(Amps) 

Maximum 
Power 
(Watts) 

Coil 
radius 
(cm) 

Number 
of 

wraps 

Separation 
(cm) 

HC-A 200 29.6 450 to 600 4 75 10.5 
HC-B 199 5.5 650 to 900 9.5 490 10 

3.5. Ultra-High-Vacuum Facility 

The ultra-high vacuum (UHV) facility at Michigan Technological University, Figure 

3.6, is approximately 0.5 meters in diameter and 0.5 meters in length, with a base pressure 

of 10-9 Torr. High vacuum pressures were achieved using a 280 L/s turbo-molecular pump 

with a 110 L/m backing dry scroll pump; ultra-high vacuum pressures were achieved using 

a 300 L/s combination ion-sublimation pump. Attached to the facility was a 90x trifocal 

stereo microscope with a digital color camera that was used for in-situ imaging and video 

capture. Other test equipment accessible in the facility included a Matsusada AMT-5B20 

high voltage amplifier capable of ±5 kV output at 20 mA, a Rigol DG4162 arbitrary 

function generator, EEVBlog μCurrent micro-ammeters, an in-house-built high-voltage 

uAmmeter, and a Keithley 2410 Sourcemeter. The signals from each piece of test 

equipment were recorded through an NI PXI-1033 data acquisition chassis via a SCB-68 

connector block, or a NI USB-6361 multifunction input-output device. 
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Figure 3.6. The ultra-high vacuum facility in the Ion Space Propulsion Lab at Michigan 
Technological University 

3.6. Time-of-Flight Mass Spectrometry 

TOF mass spectrometers use the inherent fact that charged particles and droplets 

extracted from a source using a constant potential will have a unique velocity proportional 

to each particle’s mass-to-charge ratio. To do this, the mass spectrometer pulses an 

extraction electrode iV  placed perpendicular to the axis of the electrospray beam to capture 

a volume of the beam and accelerate it toward a charge-exchange multiplier (CEM). Each 

particle’s time-of-flight is defined as the difference between the time at which the 

extraction plate is pulsed and the time at which the particle is recorded by the CEM. A 

particle’s time-of-flight can be directly related to its mass-to-charge ratio i im q  through 

the relationship between electrical and kinetic energy of the particles, shown in (2.4), 
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Rearranging (2.4), and substituting the length of the TOF chamber, TOFL , divided by 

the time-of-flight, flightt , for the velocity, the mass-to-charge ratio of a species of particles 

as a function of their flightt , and vice versa are defined as, 
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The output of the mass spectrometer used in this research (AFRL TOF-MS) was the CEM 

intensity plotted against the time after the pulsing plates were activated (see Figure 3.8.). 

To convert the time axis to m/q, the peaks with flight times that closely matched the flightt  

of the known EMIM-NTf2 ion species were assigned to their respective m/q, (all ions 

assumed to be singly charged), and a scale between flightt and i im q  was defined via a 

linear fit with the slope equivalent to 10.5TOF iL V  . 

3.7. Air Force Research Laboratory Time-of-flight Mass 
Spectrometer Facility 

The Air Force Research Laboratory at Kirtland Air Force Base housed the orthogonal 

TOF mass spectrometer facility used for this research, Figure 3.7. The mass spectrometer 

that comprises the bulk of the facility, is briefly described later; a full description of the 
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instrument is well documented by Miller et al.[58] The facility has the capability of 

detecting particles in the range of a couple amu/e to 200,000 amu/e; and is comprised of a 

1-meter long by 0.254-meter wide by 0.254-meter tall reflectron flight-tube detection 

chamber that is situated orthogonal to a 0.5-meter long source chamber. A multichannel 

plate (MCP) is used as the detector and is positioned at the end of the reflectron flight-tube. 

The MCP signal was directed into two amplification stages of a 300 MHz Stanford 

Research pre-amplifier and then read by a multichannel scaler or a TOF card to produce 

TOF spectra. The source chamber was maintained at a pressure of 10-7 Torr, while the 

detection chamber was maintained at approximately 2 x 10-8 Torr. The pressures were 

achieved using two 250 l/s turbo-molecular pumps backed by one 600 L/min dry scroll 

pump.   

Figure 3.7. The time-of-flight mass spectrometer facility in the Air Force Research 
Laboratory at Kirtland AFB. The facility was capable of linear and reflector TOF-MS. 
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Multiple lenses, grids and deflectors were also attached at the end of the CES used to 

maximize the intensity of the beam that entered the TOF extraction region. The extraction 

region consisted of a pair of parallel pulsing plates which are parallel to, but offset from, 

the beam axis. Each plate had a gridded aperture to allow orthogonal transmission of ion 

species when the voltages on the plates are pulsed. If the parallel pulsing plates were off, 

the beam would pass through a 6-mm aperture where a quartz crystal microbalance (QCM), 

used to quantify the mass flow rate, and a Faraday cup, used to measure the current of the 

beam, were located. These devices were positioned by means of a linear translation stage 

allowing rapid switching of the two devices. The QCM measured the mass flow rate of 

electrospray by measuring the accumulation of a uniform layer of the condensed beam 

products on a quartz crystal. The additional layer changed the natural frequency of the 

crystal, which translated to thickness-, or mass accumulation-, per-second. The maximum 

detectable mass flow rate on the QCM was on the order of 100 ng/s.  

The transverse axis began beyond the parallel extraction plates with an Einzel lens 

located 6 mm from the time-of-flight extractor pulsing plate, with the front and back lens 

potential of the Einzel fixed at ground. Beyond the Einzel lens was a simple horizontal 

deflector that allowed the ion beam into the main field-free flight tube. At the end of the 

tube, a series of grids turned the ion beam around and directed it to the MCP.  
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Figure 3.8. Schematic of TOF-MS facility showing the relative locations of the spectrometer, 
CES and other components of the facility. 

The collection of a time-of-flight spectrum constituted the accumulation of signal from 

the MCP over a series of pulse cycles. In each pulse cycle, the plates are first given a base 

DC offset that serves to retard the ions in the middle of the extraction zone. When the pulse 

was active, the repeller plate (VA1) had a greater potential than the draw-out grid (VA2), 

which serves to repel the ions toward VA2. Particles which passed through the aperture of 

the draw-out grid yielded additional acceleration as the front component of the Einzel lens 

was held at ground. For example, consider the emission source being biased at +900 V, 

and with the pulsing plates initially at a potential of +880 V. Ions in the middle of the 

extraction region will have had approximately 20 eV axial kinetic energy at the center of 

the extraction region, assuming they were emitted at the nominal bias potential. If these 

ions were in the center of the extraction region during an active pulse event of +400 V, 
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VA1 would have been at a +1280 V potential, while VA2 maintained +880 V. If an ion 

successfully passed VA2, it will have netted approximately 1080 eV of transverse kinetic 

energy by the end of the Einzel lens, which it then used to travel along the flight-tube to 

the MCP. 
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Chapter 4 

Onset and Stability of the Capillary Electrospray 

Source 

Two basic parameters of standard electrospray operation are emission onset and its 

stability island. Examining how the magnetic NPs and magnetic stress alter these 

parameters was a good introduction into how the ILFF electrosprays compare to neat IL 

electrospray. Chapter 4 defines and discusses the three experiments conducted on the CES 

described in Section 3.1. to measure the two parameters; specifically, there was an onset 

experiment (ON-Exp), and two experiments to define the stability island, one for positive-

polarity emission (PSI-Exp) and one negative-polarity (NSI-Exp). It begins with the 

motivation behind the experiments and research goals which they were expected to 

achieve. The remaining sections of Chapter 4 were partially collated by experiment in the 

following format: apparatus and experimental setup, experiment procedure, and results of 

experiment. A discussion on the influence that magnetic field on the onset experiment 

immediately follows its results, while discussing on the influence both NPs and magnetic 

field had on the stability island were completed for both stability island experiments 

concurrently. The chapter ends with conclusions which relate the findings to the overall 

goals of the research.  
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4.1. Motivation and Goal 

The potential required for onset of electrospray is a necessary component of the 

stability island as it defines the power required to operate the electrospray. Literature shows 

that the onset potential is between 5- and 20-percent greater than the extraction potential 

required for stable emission.[1, 90] The onset potential is dependent on surface tension of 

the propellant, as shown by (2.3), and the NPs within the ILFF propellant were shown to 

increase the surface tension of the neat IL (Figure 3.1). Furthermore, the study by Madden 

et. al also showed that the onset potential was highly influenced by an applied magnetic 

field. These three combined observations/studies motivated the experiments to determine 

onset potential of the CES using the ILFF propellant. 

Another integral measurement of electrospray performance is the what has become 

known as the electrospray stability island required. Cloupeau and Prunet-Foch were some 

of the first researchers to attempt systematic studies of the stability island (termed the 

“functioning domain” in their work) for a given electrospray fluid.[90] Their findings on 

the matter discerned the influences of conductivity, capillary geometry, and wettability on 

the stability island, and also discussed several phenomena including coronal discharge 

effects and hysteresis induced by the direction of extraction potential change. Jaworek and 

Krupa also used a systematic approach to measure the operating modes of electrosprays 

based on different flowrates and extraction potentials.[91, 92] Several of these modes came 

when an electrospray operated outside of its stability island; I have illustrated these modes, 

along with the stable cone-jet mode, with respect to Q vs. Vext  in Figure 4.1.  
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Figure 4.1. General shapes (dotted, solid, and dashed curves) of the stability island (Q, Vext) 
for capillary electrosprays based on literature.[90] The conductivity of the operating 

propellant increases from the dotted (right) curve to the dashed (left) curve. The general 
shape of a Taylor cone operating within the stability island, i.e. stable cone-jet (4), and 

outside of the stability island, i.e.  pulsating-cone (1), asymmetric cone-jet (2), and 
overflowing cone-jet (3), are shown relative to the solid (center) stability curve. 

The different modes are (1) pulsating cone caused by either a lack of propellant-flow 

or low extraction potential, (2) asymmetric cone-jet caused by overly-high extraction 

potentials, (3) overflowing cone-jet caused by an excess of propellant-flow, and (4) a stable 

cone-jet. The latter mode produces a consistent electrospray beam that is symmetric along 

the center beam-axis and is desired when using diagnostic tools described in Section 5.2. 

The desire to operate in the stable cone-jet mode spurred the motivation to determine the 

stability island of the CES using the new ILFF propellants, which were already shown to 

have significant changes in conductivity from the NPs within (Figure 3.1). Furthermore, a 
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study by Madden et. al using a low-conductivity ferrofluid electrospray showed that the 

envelope of stable flowrates and extraction potentials was increased by applying a 

magnetic stress to the electrospray. This provides motivation to also determine the stability 

island of the CES using the ILFF propellants while it is subjected to a magnetic field.  

 The motivation outlined above led to three goals for the experiments presented in 

this chapter. One was to determine the stability island of CES producing magnetic-field-

free electrosprays of the five diluted ILFF propellants described in Table 3.1. Another goal 

was to determine the effect a gradient-free magnetic field has on the stability island of the 

CES emitting electrosprays of the five diluted ILFF propellants. The final goal was to 

determine the effect a gradient-free magnetic field had on the onset potential of the CES 

running the parent ILFF. The following sections detail the setup, procedure, results and 

analyses specific to each of the three experiments used to achieve these goals, starting with 

the ON-Exp and followed by the stability island experiments (PSI-Exp and NSI-Exp). 

4.2. Electrospray Onset Experiment 

The electrospray onset experiment (ON-Exp) was completed to determine how the 

onset potential of the CES was influenced by the combined effect of the magnetically 

susceptible NPs and an applied magnetic field. First, the experiment setup and apparatus 

are presented and followed by the procedures used to measure onset with and without the 

magnetic field. 
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4.2.1. Experimental Setup 

The setup for the ON-Exp is shown in, Figure 4.2. The experiment was conducted at 

atmosphere, although the setup was mounted within the UHV facility. The setup used a 

feed system in which the propellant vial was open to atmosphere and the capillary tube fed 

from the vial directly to the CES, as shown in Figure 4.2. A Matsusada AMT-5B20 

high-voltage amplifier in direct DC output mode was used to apply the extraction potential, 

and the μA2 HV microammeter for was used to measure emission current. The data 

channels were recorded via LabVIEW using a NI-6361 USB DAQ. A 90x trifocal, stereo 

microscope with a digital color camera was used to capture the video and still images of 

the emission site.  HC-A was used to provide the magnetic field when necessary. 

Figure 4.2. Setup used in ON-Exp. The experiment was conducted at atmosphere. 

The μA1 HV microammeter, and the μA2 HV microammeter used in PSI-Exp later, 

were a custom-built by Washeleksi and Makela[93] to measure 0 to 100 μA through a cable 

that was floating 0 to 10 kV. A block diagram and further description of the device is 

provided in Makela’s dissertation. Both devices required a warm-up period of ~30 minutes 
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to remove transient signals. When the devices were at steady-state a Keithley 2410 

Sourcemeter was used to calibrate the output signal; multiple calibration curves are shown 

for both devices in Appendix A. 

4.2.2. Procedures 

In ON-Exp the extractor plate was fixed 1.32 mm downstream of the capillary apex. 

The CES was inserted into HC-A and placed into the UHV facility. The experiment was 

conducted at atmosphere environment with hydrostatic pressure since flow rates or post-

onset behavior were not a concern of this study. The ILFF propellant was inserted into the 

vial, which was positioned 65 mm above the needle tip such that hydrostatic pressure would 

form a meniscus at the needle exit. The propellant vial bias was swept from 0 V to Vonset at 

a slew rate of 100 V/s, while the extraction electrode was kept at ground. The voltage bias 

on the propellant vial was removed once onset was observed. The procedure was repeated 

five times with zero magnetic field applied to the source. 50-, 100-, 150-, and 200-Gauss 

magnetic fields were then applied to the source, and the procedure was repeated three times 

for each magnetic field strength. The needle was cleaned after each increase in magnetic 

field strength. Note: the atmosphere environment and the propellant used in ON-Exp 

(parent ILFF) differed from the vacuum environment and ILFF-based propellants of the 

stability island experiments. 

4.2.3. Results and Discussion – Magnetic Influence on Onset 

Results from the onset potential experiment (Figure 4.3.) were the telemetries of 

emission current and extraction potential for the CES operating with a) 0 and b) 200 Gauss 
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magnetic fields. Comparing the extraction potential telemetries of the two plots illustrates 

that an application of a 200-Gauss magnetic field to the source reduced the extraction 

potential required for onset (defined as the point which emission current became non-zero). 

Figure 4.3. Telemetry of CES emission current and the extraction potential applied to the 
source collected during onset potential experiment while in atmosphere environment. 

Applied magnetic field is (a) 0 Gauss, (b) 200 Gauss 

Onset potentials were extracted from the emission current and extraction potential 

telemetries collected for 0-, 50-, 100-, 150-, and 200-Gauss magnetic fields and are shown 

plotted against time for five discrete steps in magnetic field strength in Figure 4.4. 

Figure 4.4. Onset potential of CES plotted against the strength of the magnetic field applied 
to the source. 
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The onset potential appeared to follow a negative trend which was proportional to the 

magnetic field strength. Specifically, a 200-Gauss magnetic field induced a 22-percent drop 

in the onset potential of the CES operating on the parent ILFF. The behavior was likely a 

result of the magnetic pressure acting on the meniscus at the emission site. As described in 

the Section 2.2.2., the magnetic pressure will act to stretch a meniscus in the direction of 

the magnetic field, which was along the electrospray beam axis of the source in the 

Helmholtz coil setup. The additional stress from the magnetic field aides the electric stress 

in inducing the formation of the Taylor cone and subsequent ion/droplet emission.  

The change in shape of the meniscus could have caused the reduction in the onset 

potential. In-situ observation of the parent ILFF electrospray during the application of 

magnetic field, shown in Figure 4.5., suggests the Taylor cone undergoes significant 

increase in the cone angle, from 44.5° to 50.4° as a reaction to the magnetic stress. Krpoun 

and Shea suggested that an increase in half-angle of the emission cone reduces the onset 

potential. Therefore, the onset potential reduction is possibly the result of an increase in 

cone half-angle caused by the applied magnetic field application. 

Figure 4.5. Images of the Taylor cone geometry at the emission site of CES operating on the 
parent ILFF with an applied magnetic field strength of a) 0 Gauss and b) 200 Gauss. Image 
enhanced using an edge detector and the cone angle was measured for a magnetic field of c) 

0 Gauss and d) 200 Gauss. 
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Evidence that the combined stresses were the physical mechanism that reduced the 

onset potential was in a numerical simulation conducted by Jackson, Terhune, and 

King.[94] The study was on the deformation of magnetically susceptible meniscus under 

electric and magnetic fields, and showed agreement to the trend observed in this 

experiment, albeit predicting only a 10- to 15-percent drop in onset potential induced by a 

magnetic field.  

To end this section I would like to note that there was another interesting observation 

made when I attempted to complete the onset experiment at vacuum. During the test, stable 

electrospray onset was not achievable; however, the results showed a trend between the 

frequency of electrospray onset and cessation and the magnetic field strength. A discussion 

on the findings can be found in Appendix B. 

4.3. Stability Island of the Capillary Electrospray Source 

The stability island of the CES was partially defined in this research. The purpose was 

to determine the influence of NPs and the applied magnetic field on the lower bounds of 

the stability island, as well as defining multiple stable points within the stability island. 

Because the CES was operated in both positive and negative polarity for the extraction 

potential, an experiment was conducted in each polarity (PSI-Exp and NSI-Exp, 

respectively). The following sections describe the experimental setup, procedures, and 

results of the experiments, first for PSI-Exp and then for NSI-Exp. This is followed by 

analyses on the influence that NPs and magnetic field had on the stability island, which are 

presented in parallel for both experiments. 
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4.3.1. Positive-Polarity Stability Island Experiment 

4.3.1.a. Experimental Setup 

The setup for the PSI-Exp is shown in Figure 4.6. It used the same pressure feed system 

described in Section 3.3., and the HC-B Helmholtz coil to provide magnetic field when 

necessary. A Matsusada AMT-5B20 high-voltage amplifier in direct DC output mode was 

used to apply the extraction potential, and the μA1 HV microammeter was used to measure 

emission current. The data channels were recorded via LabVIEW using a NI-6361 USB 

DAQ.  

Figure 4.6. Setup for stability island experiments conducted in the UHV Facility. 

4.3.1.b. Procedures 

PSI-Exp was completed using the following procedures. The procedures to measure 

the emission current at various Q and Vext within the stability island are described first, 

followed by those used to measure minimum flowrate. The initial conditions of the stability 
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island for electrospray emission using the CES were unknown; Instead, the initial 

extraction potential was chosen based on the theoretical onset potential calculated from 

(2.3). The extraction distance of the source, dext, was 1.22±0.03 mm throughout the testing, 

R was 0.0375 mm and 0  is a known constant, leaving the surface tension of the fluid, 

, as the only dependent variable.  varied from 36 mN/m for neat IL to 32 mN/m for the 

parent ILFF. Inputting these values into (2.3) results in the theoretical onset potential of 

1541±10 V for the CES operating on the parent ILFF (note this matches the onset potential 

measured in Figure 4.4.), and 1634±10 V for neat IL. Therefore, 1700 V was chosen as the 

initial extraction potential. The initial flowrate was selected as the vial pressure that induces 

a nominal 0.5 nl/s which was based on the reported range of 0.1 nl/s to 2.18 nl/s  from 

studies by Gamero-Castaño and Hruby,[18] Lozano,[1] and Miller[95].  

Based on these initial conditions, the following procedure was taken to determine the 

lower boundaries of the positive-polarity stability island of the propellants listed in Table 

4.1. The CES was inserted into the UHV facility which was pumped to high-vacuum. The 

propellant vial was filled with one of the propellants and the vial was pressurized to the 

absolute pressure corresponding to known flowrates of the specific propellant (pressures 

and flowrates are listed in Table 4.1). The propellant vial was then biased to -1700 V, while 

holding the extractor plate at ground potential, to establish a magnetic-field-free 

electrospray; the emission current was recorded concurrently. A 200-Gauss magnetic field 

was then applied to the source, while maintaining the same flowrate and extraction 

potential, and the emission current was recorded concurrently. The magnetic field was then 

removed to return the CES to magnetic-field-free electrospray emission. 
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 The magnitude of the extraction potential was then increased by 100-V and the 

procedure was repeated. The number of times the extraction potential was increased 

depended on whether the emission current substantially increased or decreased after the 

change in extraction potential (±100% the magnitude of the previous emission current). 

Both are indicative of other, undesired, modes of emission (multiple jets or off-axis 

emission). The number of steps was limited to a maximum of four as the upper range of 

the stability island was not in the scope of this work. The magnitude was then decreased 

one or two 100-V increments, depending on the whether the electrospray ceased emission 

and the procedure was repeated. The CES was removed from the UHV facility, cleaned 

and returned each time there was a change in propellant. 

Table 4.1. Vial pressures (absolute) and corresponding flowrates for each of the propellants 
used in the CES. 

ILFF Solution Vial Pressure (Torr) Flowrate (nl/s) 
Neat IL 50 0.32 

100 0.63 
150 0.95 
200 1.26 

ILFF-20 100 0.47 
150 0.71 
200 0.94 

ILFF-30 125 0.45 
175 0.64 
225 0.82 

ILFF-40 150 0.47 
200 0.62 
250 0.78 

The minimum flowrate of the positive stability island was determined using a separate 

procedure from the rest of PSI-Exp. The CES was inserted into the UHV facility and 
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operated on one of the ILFF-based propellants listed in Table 4.1. at its lowest stable 

flowrate. The initial extraction potential was selected as the minimum potential used in the 

first part of PSI-Exp. After a stable magnetic-field-free electrospray was established, the 

vial pressure was reduced at a slew rate of approximately 0.5 Torr/s until the emission 

became erratic or extinguished. The vial pressure was then reset to the starting pressure 

and a 200-Gauss magnetic field was applied to the source. The same procedure was then 

followed to determine the minimum flowrate with a 200-Gauss magnetic field. The entire 

procedure was repeated for each of the extraction potentials determined in the first part of 

PSI-Exp, in 100-V increments. The procedure was repeated for all ILFF-based propellants 

in Table 4.1. and ILFF-50 propellant at Vext of -2000, -2100, -2200, and -2300 V.  The CES 

was removed from the UHV facility, cleaned and returned each time there was a change in 

propellant. The minimum flowrate for neat IL was not determined as the interest of the 

measurement was to determine if any magnetic influence existed for ILFF-based 

electrosprays. However, the minimum flowrate of neat IL during negative-polarity 

electrospray emission was much lower than that of any of the ILFF-based propellants 

(Section 4.3.2.c.) and the same should be expected during positive-polarity electrospray 

emission. 

4.3.1.c. Results 

The results from PSI-Exp include the lower range of the stability island for ILFF-20, 

ILFF-30, ILFF-40, and ILFF-50 propellants, and the emission current at each (Q, Vext) data 

point of all the propellants in Table 4.1. Examples of the emission current and vial pressure 

telemetries used to determine minimum flowrate from a ILFF-20 electrospray with and 
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without a 200-Gauss magnetic field are shown in Figure 4.7. In the plot, the emission 

current (red curve) remained stable until a critical vial pressure was reached (blue curve), 

at which time the magnitude drops to zero; the vial pressure at that moment converted to 

flowrate was considered the minimum flowrate for this Q, Vext. 

Figure 4.7. An example of the vial pressure and emission current histories for the minimum 
flowrate test of PSI-Exp using ILFF-20 with a) zero magnetic field, and b) a 200-G magnetic 

field. The green dashed lines highlight the vial pressure at the point emission becomes 
erratic, indicating the minimum flowrate. 

The lower range of the stability island four ILFF-based propellants are included in 

Figure 4.8. The left-most (low flowrate) data points in the plot define the lower Q boundary 

of the stability island for the respective extraction potentials. The bottom-most (low 

extraction potential) data-points were not strictly the lower Vext boundary, however, they 

are within 100 V of the lowest potential at which the CES could operate. Figure 4.8. 

illustrates that the extraction potential required for stable emission correlated to the wt% 

of NPs within the neat IL. For example, given the nominal flowrate 0.33 nl/s, the required 

extraction potential to produce stable emission was only 1600 V for the ILFF-20 propellant. 

However, increasing the wt% NPs in the neat IL by approximately 2, 6, or 11% and the 

required extraction potential becomes 1800, 1850 and 2000 V, respectively. The emission 
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current (results presented in Section 4.3.3.a.) followed a similar trend, wherein the 

propellants with increasing wt% NPs had increasing magnitudes of emission current (for a 

given Q). Both trends related to wt% NPs in neat IL, along with the magnetic influence on 

the electrosprays, will be discussed in Section 4.3.3. 

Figure 4.8. Lower region of the positive-polarity stability island for the CES operating on 
ILFF-20, ILFF-30, ILFF-40, and ILFF-50 propellants. The data points at the lowest 

flowrates for a given extraction potential were determined to be the minimum flowrate for 
the CES operating on each propellant. The remaining boundaries (higher flowrate and 

higher extraction potentials) were not completely defined; no boundaries for the neat IL 
stability island were defined. 

4.3.2. Negative-Polarity Stability Island Experiment 

4.3.2.a. Experimental Setup 

The negative stability island experiment (NSI-Exp) was conducted in the AFRL 

TOF-MS facility and used a pressure feed system like the one described in Section 3.3. for 

propellant delivery, Figure 4.9. Two Matsusada AMT-5B20 HVAs (one to bias the 
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propellant vial, one to bias the extraction electrode) amplified DC signals from external 

generators to extract electrospray from the CES. Emission current was measured using via 

either a Fluke 179 Multimeter or a calibrated Keithley 617 electrometer which was input 

into LabVIEW via a NI USB-6008 DAQ. HC-B was utilized for the operation 

characterization and the minimum flowrate experiment. 

Figure 4.9. Setup for experiments conducted in the AFRL-TOF Facility. 

A Fluke 179 Multimeter placed in-line with the propellant vial biasing cable would 

measure the voltage drop, which could be converted to emission current of the source. The 

equivalent impedance of the multimeter in-line with the biasing cable was 4.444 MΩ. This 

meant readout on the multimeter display could be converted to emission current using the 

conversion factor 0.225 μA/V. The signal was recorded every 5 minutes unless there was 

a change in extraction voltage or flowrate, in which case the current was recorded 

immediately after the change.  Using the Fluke multimeter was necessary due to a lack of 

a HV microammeter like those available at Michigan Tech. 
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4.3.2.b. Procedures 

NSI-Exp was completed in conjunction with time-of-flight mass spectrometer 

experiment presented in Chapter 6. As such, mapping the stability island was not rigorous. 

However, the goal to determine the Q and Vext that produced stable electrospray using the 

CES and the ILFF propellants was achieved. The procedures used to measure the emission 

current at various Q and Vext within the stability island are presented first, followed by those 

used to measure minimum flowrate. The initial conditions were determined using the same 

method as the PSI-Exp. The specific geometry of the CES changed, specifically the 

extraction distance was 1.2±0.10 mm, but the propellant properties remained the same. 

Therefore, the initial extraction potential and flowrate were different, e.g. Vext = 1750 V 

and Q = 0.63 nl/s for neat IL.  

The propellant vial was filled with one of the propellants listed in Table 4.2. and the 

vial was evacuated.  The CES was then inserted into the AFRL TOF-MS facility which 

was pumped to high-vacuum. When the desired vacuum was achieved the propellant vial 

was pressurized to the absolute pressure corresponding to known flowrates of the specific 

propellant (pressures and flowrates are listed in Table 4.2). The source was concurrently 

biased to the initial extraction potential as determined above. The bias to create the 

extraction field for tests in TOF-MS facility was split between the propellant vial electrode 

and the extraction plate. As the TOF-MS pulsing plates required the particles to be a 

constant energy, the vial electrode had a constant 900-V bias and the extraction plate varied 

from -600 V to -1100 V, depending on the propellant and flowrate. Once a stable 

electrospray was established the emission current was recorded. A 200-Gauss magnetic 
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field was then applied to the source, while maintaining the same flowrate and extraction 

potential, and the emission current was again recorded. The magnetic field was then 

removed to return the CES to magnetic-field-free electrospray emission. 

 The magnitude of the extraction potential was varied by either ±50 or ±100 V 

depending on the propellant and flowrate and procedure was repeated (the procedure was 

only completed for one (Q, Vext) using the ILFF-40 propellant). The CES was removed 

from the ARFL TOF-MS facility, cleaned and returned each time there was a change in 

propellant. 

Table 4.2. Vial pressure and corresponding flowrates for each of the propellants used in the 
CES. 

ILFF Solution Vial Pressure (Torr) Flowrate (nl/s) 
Neat IL 50 0.32 

100 0.63 
150 0.95 
200 1.26 

ILFF-10 100 0.52 
150 0.78 
200 1.04 

ILFF-30 125 0.45 
150 0.55 
175 0.64 
200 0.73 
225 0.82 
250 0.91 

ILFF-40 175 0.54 
ILFF-50 150 0.54 

The minimum flowrate of the positive stability island was determined using a separate 

procedure from the rest of NSI-Exp. The CES was inserted into the AFRL TOF-MS facility 

and operated on either neat IL, ILFF-10, ILFF-30 or ILFF-50 at its lowest stable flowrate. 
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The initial extraction potential was selected as the minimum potential used in the first part 

of NSI-Exp. After a stable magnetic-field-free electrospray was established, the vial 

pressure was reduced at a slew rate of approximately 0.5 Torr/s until the emission became 

erratic or extinguished. The vial pressure was then reset to the starting pressure and a 200-

Gauss magnetic field was applied to the source. The same procedure was then followed to 

determine the minimum flowrate with a 200-Gauss magnetic field. The entire procedure 

was repeated each of the remaining propellants (either neat IL, ILFF-10, ILFF-30 or 

ILFF-50) at multiple extraction potentials determined via the method as used in PSI-Exp 

(Section 4.2.2.). The CES was removed from the UHV facility, cleaned and returned each 

time there was a change in propellant. The minimum flowrate for neat IL was only 

determined for one extraction potential -1600 V.  

4.3.2.c. Results 

The results from NSI-Exp include the minimum flowrates for each ILFF-based 

propellant for several extraction potential magnitudes, and emission currents for each of 

the (Q, Vext) point for all propellants listed in Table 4.1. An example of emission current 

and vial pressure telemetries used to determine minimum flowrate from a ILFF-30 

electrospray with and without a 200-Gauss magnetic field are shown in Figure 4.10. The 

result of applying the 200-Gauss magnetic field to the ILFF-30 electrospray is a lower 

required vial pressure (i.e. flowrate) to maintain a stable emission. This will be investigated 

further in Section 4.3.3.c.  
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Figure 4.10. An example of the vial pressure and emission current histories for the minimum 
flowrate test of NSI-Exp using ILFF-30 with a) zero magnetic field, and b) a 200-G magnetic 

field. The green dashed lines highlight the vial pressure at the point emission becomes 
erratic, indicating the minimum flowrate. 

The lower range of the negative-polarity stability island for ILFF-10, ILFF-30, and 

ILFF-50 propellants are shown in Figure 4.11. Only the lower Q boundary for the stability 

island was determined, while the lower Vext boundary was within 100 V of the lowest 

potential included in the plot. Boundaries of the neat IL, ILFF-20, and ILFF-40 negative-

polarity stability islands were undefined and therefore not included in Figure 4.11. 

However, the minimum flowrate for neat IL was measured at Q = 0.19 nl/s for 

Vext = -1600 V. The magnetic influence was significant on the negative stability island for 

ILFF-30 and ILFF-50 propellants; a discussion on the influence is included in Section 

4.3.3.c. 
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Figure 4.11. Lower region of the negative-polarity stability island for the CES operating on 
ILFF-10, ILFF-30, and ILFF-50 propellants. The data points at the lowest flowrates for a 

given extraction potential were determined to be the minimum flowrate for the CES 
operating on each propellant. The remaining boundaries (higher flowrate and higher 

extraction potentials) were not completely defined. 

4.3.3. Analysis and Discussion of Stability Island 

The results presented in the previous section successfully defined multiple (Q, Vext) 

points within the stability island for both negative- and positive-polarity emission for the 

neat IL and ILFF-based propellants described in Table 3.1, along with the lower Q 

boundary for many of the propellants. The results also revealed that both the magnetic field 

applied to the electrospray and the magnetic NPs in the electrospray propellant affected 

normal electrospray operation. While the influence the NPs had on emission current did 

not fall in the experimental goals of this chapter, it was within the overall goals of the 

research, and as such warranted the discussion presented here. Therefore, I have split the 
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discussion section into four subsections with each focusing on how either the magnetic 

NPs or magnetic stress affected the stability island, emission current.  

4.3.3.a. Nanoparticle Influence on the Stability Island 

As mentioned in the results of the positive-polarity stability island, there appeared to 

be a correlation between the extraction potential of the electrospray and the wt% NPs in 

the propellant. Specifically, and increase in the lower extraction potential boundary with 

an increase in wt% NPs in the propellant. The effect of the NPs to the negative-polarity 

stability island was similar, wherein the lower extraction potential boundary of CES was 

Vext = -1500± 0
100 V operating on the ILFF-10, Vext = -1600± 0

100 V operating on the ILFF-30, 

and Vext = -2000± 0
100 V operating on ILFF-50. While the trend is interesting, the mechanism 

behind it is unknown. Theoretically, if the Prewett-Mair or Krpoun-Shea models  for onset 

potential holds true, (2.3) and (2.4), respectively, changes in surface tension, permittivity 

and/or the meniscus apex radius could induce the increase extraction potential observed in 

the results. However, surface tension differed by only 10% between neat IL and ILFF and 

therefore is unlikely to be the cause of any change in onset potential. Alternatively, 

permittivity would induce the onset potential increase, if it increased proportionally with 

weight-percent of the NPs in the propellant. Literature has shown that NPs can change the 

permittivity of its carrier fluid;[96, 97] however, permittivity was unknown for any of the 

ILFF-based propellants as its measurement was out of the scope of this work (the effects 

permittivity has on electrospray as seen in literature is discussed more in the next section). 

Potentially, the NPs could influence the apex radius since they are non-deformable and 
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therefore define a minimum radius when they are located at the apex. However, a larger 

apex radius should induce a reduction in onset potential; as such more NPs in the propellant 

should lower necessary extraction potential, which is the opposite trend of that observed in 

Figure 4.8 and Figure 4.11. Therefore, the physical mechanism for the increase in necessary 

extraction potential when using ILFF propellants remains uncertain, though it appears the 

NPs are at least partially responsible. 

The lower bound of flowrate for the CES stability island did not appear to correlate to 

the weight-percent of suspended nanoparticles. Comparison between the minimum 

flowrate that produces stable electrospray using neat IL to that using ILFF-based 

propellants reveals that adding NPs to the neat IL increases the lower Q boundary; apart 

from this, there was no apparent trend between the NPs and the minimum flowrate of the 

propellants. 

Overall, the influence colloidal particles had on the electrospray stability island was 

likely the result of changes in fluid and electrical properties of the neat IL due to the 

inclusion of NPs. Section 3.1. showed that the NPs induced significant changes to the 

properties of the of its neat IL carrier fluid. Literature has shown that the suspension of 

colloidal particles elicits a change in the electrospray through changes in fluid and electrical 

properties of the spraying liquid. Jayasinghe and Edirisinghe sprayed a suspension of 20-

volume-percent alumina ceramic powder (0.5-micron-diameter particles) in ethanol and 

measured the size of droplet relics on a substrate finding a dependence on relic size to 

extraction potential and flowrate.[98] Suh et al. electrosprayed a 50-volume-percent 

mixture of either 4.2-, 10.5-, or 25-nanometer-diameter gold particles suspended in 
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methanol to produced highly-charged-monodisperse spray of nanoparticles.[99] Studies by 

Zhu et al. and Halimi et al. focused on electrospraying suspensions of titanium oxide 

(TiO2) nanoparticles for deposition; the former used a 40 weight-percent solution of 

25-nanometer-diameter particles in ethylene glycol to create dye sensitized solar 

cells,[100] whereas the latter deposited a 0.05-weight-percent solution of ~1-micron-

diameter particles in deionized water to measure the effect deposition distance had on the 

deposited TiO2 droplet size.[101] However, each of the studies used volatile liquids or 

liquids with low electrical conductivity, so comparison to the results in this research, which 

used non-volatile, high-conductivity propellants, was not completed. 

A final point about the stability island of the CES was during its operation using the 

ILFF propellants with higher wt% NPs. During several tests, the source operated with less 

than ideal performance when using propellants with higher weigh-percent NPs. For 

example, running the CES on ILFF-50 resulted in fluctuations in the emission current that 

were as large as 25% of the mean, Figure 4.13. These fluctuations were included as error 

bars in emission current data (e.g. Figure 4.14.) to ensure their significance was not 

ignored.  Also, the exterior surfaces of the capillary needle would wet with propellant if it 

had higher wt% NPs (Figure 4.12) that could not be removed during testing. These non-

ideal conditions were avoided by maintaining the ideal extraction field from the moment 

flow was induced to ensure overflow doesn’t occur, reducing flowrate when wetting 

begins, and cleaning the emitter after each emission test.  
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Figure 4.12. Image of CES operating on the parent ILFF showing a) ideal operation, b) the 
wetting and c) subsequent carbonization of ILFF on the external surface of the needle that 
may occur during operation of the source. Note, the needle in image a) was different than 

that in images b) and c) 

Figure 4.13. Fluctuations in emission current of CES operating on a) ILFF-20 and b) 
ILFF-50 propellants. In each plot includes a smoothed time-resolved average of the emission 

current. The standard deviation was based on the average over the entire period.  

4.3.3.b. Nanoparticle Influence on the Emission Current 

During ideal operation within the stability island, the emission current magnitude of 

the source was correlated to the wt% NPs in the propellant. However, a direct comparison 

of the current magnitude for the CES operating on each propellant does not account for the 

changes in fluid or electrical properties previously mentioned. Therefore, a term that relates 
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the properties of the fluid to flowrate and emission current was sought. A model that 

accomplishes this was developed by Fernandez de la Mora and Loscertales (Eq. (2.6) 

discussed in Section 2.1.), and is repeated here for convenience:  1/2( )r rI f KQ  

. This model scales emission current as a function of 1/2Q , and is known to hold for 

propellants with relatively high viscosity and conductivity, by relating them to an 

empirically derived F. de la Mora constant, ( ).rf  [26, 52, 102-105]  Fernandez de la Mora 

and Loscertales determined ( )rf  by taking the slope of the nondimensionalizing emission 

current, (2.8) and flowrate, (2.9) of multiple pure electrospray propellants. Based on the 

empirical data, they determined 1( )
2r rf    for 40r   and ( ) 18rf    for 40 > r , and 

( )rf   , the dimensionless counterpart to (2.6). 

However, measuring the relative permittivity of the propellants was out of the scope of 

this research, and as the unknown ( )rf   is dependent on r , the results of this data could 

not be fit to the model in (2.6). As literature has shown that permittivity of the solution is 

proportionally and/or inversely-proportionally effected by the weight percent of 

nanoparticles, it was not correct to assume that the permittivity of the ILFF-based 

propellants was the same as their carrier IL.[96, 97] Instead the spray current from the ILFF 

electrosprays was analyzed based on whether the liquids fell into the Q1/2 scaling law or 

Q1/4 scaling law defined by Gañán-Calvo et al.[27]  To determine which scaling law best 

models the spray current from ILFF electrosprays, the dimensionless parameter 1/3
  was 

calculated. For ILFF (NJ397091) using the properties outline in Section 3.1., and a nominal 
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flowrate of 1 nl/s, the result was 1/3
  = 8.30E-05, which is much less than 1. This means 

that the spray current should scale as I ~ Q1/2, like the model set in by (2.6). 

Since the permittivity of the ILFF propellants was unknown, the permittivity dependent 

parts of (2.6) were combined into a single constant
1

2( ) ( )r r rg f   , and ignored such 

that a scaling relationship between the emission current and remaining variables was 

created: ~I KQ . Using the properties of the propellants defined in Section 3.1., the 

emission current for each propellant is plotted against KQ in Figure 4.14. 

Figure 4.14. Measured emission current of the magnetic stress-free CES plotted against
KQ . a) CES operating in positive polarity using neat IL and four of the ILFF 

propellants; b) CES operating in negative polarity using neat IL and the five ILFF solutions.  
Linear fits for each electrospray (solid) follow ( )rI g KQ  . 

The plots reveal that an increase in the weight-percent of Fe3O2 is proportional to the 

slope of the I vs. KQ line. As ( )rg  is the constant that relates I to KQ , Figure 4.14 

shows that ( )rg   for each propellant, and, correspondingly, the permittivity of each 

propellant must be correlated to the wt% NPs in the neat IL. This is of course assuming 
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that the ILFF propellants follow the Q1/2 scaling law, which is best verified by measuring 

the permittivity of the ILFF propellants. I would like to note that even if the permittivity 

varied by an order of magnitude in either direction, the electrosprays would still follow this 

scaling law.  

As a propellant that follows the Q1/2 scaling law (with high viscosity and conductivity), 

ILFF emits electrosprays with a current that does not scale with the electrostatic variables 

(i.e. electric field and the resulting electric stress). Instead, the emission current depends 

on the flowrate and liquid properties of the ILFF propellant. Also, in following the Q1/2 

scaling law, an ILFF electrospray emits a jet with a flat velocity profile across its radius, 

and charge is carried by both conduction in the bulk of the jet and convection along the jet 

surface. This is opposed to propellants with low viscosity/low conductivity in which charge 

is by surface convection.[27] This means that when electrospraying an ILFF propellant, 

the tangential electric stress of the electric field is transmitted across the entire jet due to 

the propellant’s high viscosity, i.e. viscosity is the driving variable in determining charge 

advection and fluid velocity within an electrospray jet. 

An observation unrelated to NPs in the propellant was the influence the extraction 

potential polarity had on the magnitude of emission current for all the propellants. The 

polarity-dependence on magnitude of emission current is observed in literature.[2, 3, 9, 

106] It is an expected consequence of size difference between the anion and cation of the 

IL (m/q is 111 amu/e and 280 amu/e for EMIM+ and NTf2-, respectively). As the ions are 

the sole charge carrier of an IL electrospray, the difference in m/q of the cation and anion 

resulted in larger magnitudes of emission current from an EMIM+ electrospray, Figure 
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4.14. a), compared an NTf2- electrospray, Figure 4.14. b). This is not remarkable as it 

follows the expected trend according to literature, but it does provide evidence that 

electrosprays of ILFF propellants have similarities to their neat IL counterparts. 

4.3.3.c. Magnetic Influence on Stability Island 

The magnetic stress affected the stability island of several of the ILFF propellants, 

specifically the lower Q boundary. This was illustrated by comparing the minimum 

flowrates of the electrosprays without a magnetic field (previously shown in Figure 4.8 and 

Figure 4.11) to the electrosprays of the same propellants at the same extraction potential, 

but with a 200-Gauss magnetic field applied to the source, Figure 4.15. In the figure, the 

application of the magnetic field appears to have reduced the minimum flowrate of the 

electrospray, for most of the propellants and extraction potentials.  

Figure 4.15. Minimum flowrate with and without a 200-Gauss magnetic field.  Propellants 
were a) ILFF-20, ILFF-30, ILFF-40, and ILFF-50 propellants in positive-polarity operation. 
Changed induced by the application of a 200-Gauss magnetic field. Extraction field during 

operation was a) positive and b) negative. 
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The change in minimum flowrate for five of the propellants induced by the magnetic 

field is quantified in Figure 4.16 as a percentage of the minimum flowrate measured with 

no magnetic field.  The error defined in the plots is derived from a single standard deviation 

of the mean minimum flowrate converted into percent of 0-Gauss minimum flowrate. In 

Figure 4.16 the minimum flowrate of electrosprays using propellants with higher wt% NPs 

and operating with positive extraction potentials is seen to be reduced by the magnetic 

field, albeit not correlated with wt% of NPs. A similar observation is seen for the minimum 

flowrates of ILFF-20 and ILFF-30 electrosprays operating with negative extraction 

potentials; however, the error negates any correlation of minimum flowrates for ILFF-40 

and ILFF-50 electrosprays operating with the same polarity. The error included in 

minimum flowrate results was likely a consequence of fluctuations at the emission site, 

which explains the variability that was also observed in the emission current while the 

magnetic field was applied (Section 4.3.3.a.). These fluctuations significantly affected the 

spray when the concentration of nanoparticles was above 30 wt%, i.e. ILFF-40 and 

ILFF-50. Specifically, the emission current of the ILFF-50 electrospray during application 

of the magnetic field began would fluctuate by >10-percent of the mean emission current, 

and persisted for several minutes after removal of the field. 
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Figure 4.16. Percent change in the minimum flowrate from a zero-magnetic-field case for 
ILFF-10, ILFF-30, ILFF-40, and ILFF-50 propellants. Changed induced by the application 

of a 200-Gauss magnetic field. Extraction field during operation was a) positive and b) 
negative. Error bars are one standard deviation of the mean percent change in flowrate. 

This magnetic-field induced reduction of the minimum required flowrate for ferrofluids 

has also been observed by Madden et al.[107] In their work, two low-conductivity, 

sulfolane ferrofluids were used, one with 15% (v/v) ethyl ammonium nitrate (EAN), and 

the other with 0.1% (v/v) EAN. With the application of a 300-Gauss magnetic field they 

saw a 40-percent and 30-percent drop in minimum flowrate for the 15-percent EAN and 

0.1-percent EAN solutions, respectively. Furthermore, the minimum extraction at which a 

Taylor cone formed was reduced by 23-percent and 24-percent for the 15-percent EAN and 

0.1-percent EAN solutions, respectively. They did not ascertain the physical mechanism 

behind the reduction of either minimum flowrate or minimum potential. A couple 

possibilities exist and are related to the emission structure; these are discussed at the end 

of the following section. 
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4.3.3.d. Magnetic Influence on the Emission Current 

The measurement of magnetic field influence on the emission current was not a goal of 

this experiment, however, it was within the overall goals of the research and is presented 

here. The magnetic field influence on electrosprays of the ILFF-based propellants was 

readily observed in the change in emission current from the source. During application of 

the field, the emission current from the CES was significantly reduced; this was true for all 

ILFF-based propellants. The emission current collected from the CES during application 

of a 200-Guass magnetic field plotted against the quantity KQ in shown in Figure 4.17. 

Figure 4.17. Measured emission current of the CES operating within a 200-Gauss magnetic 
field plotted against KQ . a) CES operating in positive polarity using neat IL and four 
ILFF propellants; b) CES operating in negative polarity using neat IL and the five ILFF 

solutions.  Linear fits for each electrospray (solid) follow ( )rI g KQ  . 

By comparing the emission current of the source with (Figure 4.17) and without (Figure 

4.14) an applied magnetic field for all the propellants, the extent of the reduction was 

quantified as a percentage change in the emission current of the zero-magnetic-field 

electrospray in Figure 4.18. While the effect was more significant for higher concentrations 
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of nanoparticles, it was not proportional to the wt% NPs; e.g. a reduction of ~5 percent, 10 

to 40 percent, and 10 to 20 percent of the zero-magnetic-field magnitude when a 200-Gauss 

magnetic field was applied, for propellants with 3.04-, 8.80-, and 11.52-wt% nanoparticles, 

respectively. The flowrates of the source running on ILFF-50 with the 200-Gauss magnetic 

field did not match the flowrates while operating with no magnetic field. Therefore, the 

influence of magnetic stress on emission current was not precisely calculated and does not 

appear in Figure 4.18. However, for similar flowrates (within +/- 0.01 nl/s) a reduction in 

the emission current was on the order of 200 nA, or 15-percent of the mean emission 

current of the negative-polarity magnetic-field-free electrospray. 

Figure 4.18. Percent change in emission current measured before and after application of a 
200-Gauss magnetic field during a) negative extraction, b) positive extraction. 

The reduction in emission current (and the minimum flowrate and fluctuation of the 

emission current induced by the application of a magnetic field discussed in the previous 

sections) may be the product of the magnetic stress interacting with the emission site 

geometry. As noted in Section 2.2.2., perturbations, such as Taylor cones, on the surface 

of magnetic liquid are known to increase the gradient of the magnetic field ( B ).[11, 13, 
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45, 67] This would lead to a larger Kelvin force, 0B rf M B   , at the apex of the emitter 

attracting the fluid to that location, which may change the mobility dynamics of the 

nanoparticles, and/or the formation of the Taylor cone at the emission site. Literature on 

how the latter affects emission current magnitude exists for many propellants. Driesel, 

Dietzsch, and Möser report that when operating externally wetted, liquid-metal 

electrosprays the Taylor cone half-angle was inversely proportional to emission 

current.[108] Fernandez de la Mora reported that the Taylor cone angle for stable emission 

of a solution of 5-percent H2SO4 in 1-octonol influenced the emission current via the 

function 2 ( )I KqG  , where G(α) is dimensionless current. In his work, he determined 

that a proportionality between cone angle and emission current existed for the cone-angle 

range of   .[109] Figure 4.5 showed that the magnetic field application did 

increase the half-angle of the emission cone. However, empirical results presented 

previously show a reduction in current with the application of magnetic field, which is 

opposite of the trends observed by Driesel, Dietzsch, and Möser, and F. de la Mora. As 

such, the results of this form an incomplete picture, though it is possible that the change in 

Taylor cone shape induced the observed change in emission current. However, 

measurement of the Taylor cone geometry during the application of a magnetic field was 

out of the scope this research and not rigorously studied; these results should spur future 

investigations on CES cone geometry while magnetically stressed. 

Another possibility for the changes observed in the emission current and stability of 

the CES electrospray was the change in the nanoparticle mobility at the emission site. As 

Rosensweig states, steric-stabilization of nanoparticles in a ferrofluid is dependent on the 
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magnetic attractive energy in the ferrofluid, 0
0 .

H

dHW M V ds
ds


 
     

 [11] The magnetic 

field gradient at the emission site is much larger than a planar ferrofluid surface due to the 

emitter geometry. A substantial increase in field gradient could increase the magnetic 

attractive energy to a point that it overcomes opposing steric repulsion energy between the 

nanoparticles, increasing the local number concentration and impeding their mobility at the 

emission site. However, this mechanism is not fully understood, and without further 

investigation it is difficult to state whether it will have any significant effect on electrospray 

emission. 

4.4. Conclusions:  Electrospray Onset, Emission Current and 
Stability Island 

The goals of this chapter were to measure the onset potential of an ILFF electrospray, 

and to define the stability island of extraction potentials and flowrates of the propellant 

used in this research, and measure the influence a magnetic stress had on the onset and the 

stability island. First-off, as Figure 4.4. shows, the magnetic stress significantly reduced 

the require onset potential for a 26-wt% NPs ILFF electrospray; i.e. the onset potential 

when a 200-Gauss magnetic field was applied to the source was ~15% less than that when 

no magnetic field was applied. This observation was of great interest as it ultimately means 

lower power requirements to run an ILFF electrospray that is magnetically-stressed; 

however, I should note that there will be trade-offs between this reduction in power and 

extra mass and volume of the required magnet when using the ILFF electrospray as a space 

propulsion device. 
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During the stability experiments, the influence of the NPs within the ILFF-based 

propellants was most apparent, as the addition of the NPs increased both the range of usable 

extraction potentials and significantly increased the emission current of the ILFF 

electrosprays (compared to neat IL); both the necessary extraction potential and subsequent 

emission current correlated to the wt% NPs in the ILFF propellants. The influence of the 

magnetic field on neat IL electrospray was negligible; this was expected and confirmed 

that changes observed on electrospray process due to the application of a magnetic field 

were caused by the magnetic susceptibility of the NPs. The magnetic stress had a 

significant effect on the electrospray stability island and emission current of ILFF-based 

propellants; qualitatively, it appeared to decrease the emission current of the electrosprays, 

decrease the lower Q boundary of the stability island.  

However, some undesired results were observed. The emission current fluctuated more 

when using propellants with higher wt% NPs; furthermore, the magnetic field did not 

lessen the fluctuations, and frequently increased the fluctuations directly after its 

application. Also, the ILFF propellants began to coat the capillary needle after 10s of 

minutes of emission, which could not be removed via application of higher extraction field. 

Understanding the stability island of each of the propellants, with and without a magnetic 

field applied to the source, was pertinent to conduct the remaining experiments of this 

work.  
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Chapter 5 

Beam Diagnostics of the Capillary Electrospray 

Source 

Beam diagnostics of the CES were completed using the source stability island defined 

in Chapter 4. Two specific diagnostics were completed in this chapter using three ILFF 

propellants: beam energy and beam divergence of electrospray beam. The chapter begins 

with the motivation for the diagnostics and goal of the experiment, followed by the 

apparatuses and procedures used to acquire both beam energy and beam divergence of the 

CES. The chapter continues with a discussion of the results from the experiment, beginning 

with the those collected using neat IL propellant, then followed by those collected using 

the ILFF propellants. The latter is split into two parts to analyze the unique effects of NPs 

and magnetic stress to each of the beam attributes. Concluding remarks end the chapter. 

5.1. Motivation and Goal 

Electrospray performance on a source is measured through the operating parameters 

described in Section 2.1.2. These parameters defined how well the spray is extracted, 

including efficiency losses related to the cosine losses of the extracted beam, and power 

losses from partially accelerated particles.  Therefore, producing a highly-collimated spray 

at the maximum possible energy provided by the extraction field is desired. Literature 

exists on the measurement of beam energy and divergence for multiple electrospray 

sources and propellants. [43, 44, 89, 95].  However, literature does not appear to exist on 
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how colloidal NPs affect these characteristics. There exists some research on magnetic 

influence the divergence of an emitted electrospray beam including an empirical study by 

Jackson and King,[110] and a theoretical analysis of coaxial magnetic field influence on 

electrospray jets and droplets by King.[81] To date, the only empirical study conducted on 

capillary electrosprays using a superparamagnetic propellant of suspended nanoparticles 

was conducted in the TOF-MS experiments of this research, Appendix D. which used the 

TOF pulsing plates to selectively measure the fraction of the electrospray beam current at 

different energies. This study, combined with the absence of other empirical data on beam 

diagnostics using super-paramagnetic propellants provided motivation for these 

experiments presented in this chapter.  

The goals of the experiment in this chapter aligned with the overall goals of this 

research.  Specifically, the experiment aimed to 1) quantify how or if the presence of solid 

nanoparticles within an ionic liquid affect the divergence and energy of an ILFF 

electrospray beam; and 2) measure the influence of magnetic stress on the divergence and 

energy of an ILFF electrospray beam. The next section describes the specific apparatuses 

designed for this experiment and the procedures used to complete it. 

5.2. Apparatuses and Procedure 

The experiment consisted of two beam diagnostics of the CES per the procedures 

outlined in Section 5.2.4. The divergence of the beam was measured using the Faraday 

stack described in Section 5.2.2. The energy of the beam was measured using the retarding 

potential analyzer described in Section 5.2.3. Both diagnostics of the CES were performed 
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in the UHV facility, described in Section 3.5. and employed the HC-B Helmholtz coil to 

apply a magnetic field to the source. 

5.2.1. Helmholtz Coil 

The HC-B Helmholtz coil described in Section 3.4. was operated at its maximum output 

current of 5.5 Amps when the magnetic field was required. The coil was only operated for 

periods of maximum 60 seconds, and powered off following each period for approximately 

5 minutes to allow the it to cool down. 

5.2.2. Faraday Stack 

The Faraday stack diagnostic built to measure beam divergence of CES consisted of 

three concentric stainless-steel plates placed along the downstream axis of the electrospray 

beam, Figure 5.1. The design was based on Lozano’s,[1] as described in Section 2.1.2., 

albeit fewer concentric plates, and the plates were separated by centimeters to avoid 

shorting caused by the buildup of IL. It was chosen over a rotatable stage (like that used 

by Prince’s group) since the Helmholtz coil fixed to the facility and could not be rotated 

with the source. The large-aperture Faraday plate (LRP) was placed 28.2-mm downstream 

of the extractor plate and had an 18.1-mm -diameter of aperture; the small-aperture Faraday 

plate (SMP) was 41.75-mm downstream of the extractor plate and had a 12.75-mm-

diameter aperture; the solid Faraday plate (SFP) was 54.9-mm downstream of the extractor 

plate. Changes in the current fraction measured on each plate indicate potential tightening 

or broadening of the beam. The half angle of the electrospray beam that interacted with 

each Faraday plate was determined by geometry of the setup, i.e. the radii of the apertures 



www.manaraa.com

124 

in the extractor plate, LRP and SMP, and the distance each was from the source. The 

emission current was measured via the μA1 HV ammeter, and the current measured on 

each Faraday plate was measured through three individual EEVBlog μCurrent 

microammeters; the output signals of each ammeter were recorded via an input into a NI-

6361 USB DAQ and recorded via a LabVIEW VI. 

Figure 5.1. a) Schematic of the Faraday stack used as the beam divergence diagnostic 
illustrating relative position of the Faraday stack and the circuit design. b) Drawing of 

Faraday stack with dimensions. The denoted distances are measured from the extractor 
plate to the LRP (red), from the extractor plate to the SMP (green), and from the extractor 
plate to the SFP (blue). The denoted half-angles represent the portion of the electrospray 

beam that interacts with each Faraday plate. 

5.2.3. Retarding Potential Analyzer 

Three factors are typically used in the design of a retarding potential analyzer (RPA) 

used to measure ion energy in plasma devices: Debye length, grid spacing, and mesh 

size.[111-115] However, following these three criteria when designing an RPA for IL 

electrosprays is unnecessary and problematic for several reasons. An IL electrospray plume 

is comprised of ions and liquid droplets. The ions were assumed to be entirely species of 

one polarity (either anion or cation) depending on the extraction potential. Therefore, the 

Debye length is related only to the mobility of the ions. Furthermore, the electrospray tends 

to coat any surface downstream of the emission site with non-volatile, conducting film. 
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This will cause the small mesh grids to become impassible, as the liquid fills the gaps of 

the mesh. Also, if a film makes contact between the two grids it will form an electrical 

short, making the grids ineffective, which can only be removed via a chemical cleaning 

process.  

Therefore, the RPA was designed and built for this experiment to measure the beam 

energy of the CES electrospray beam, while based on the criteria of plasma RPAs, needed 

to account for the differences and obstacles inherent to IL and ILFF electrospray. The final 

design is illustrated in Figure 5.2.  

Figure 5.2. a) Image of the RPA design as a diagnostic of IL and ILFF electrospray b) 
Circuit schematic of the RPA used in the beam energy diagnostic (exploded view); (1) Front 

grid, (2) Repeller grid, (3) Faraday plate. 

Only two electrostatic grids were used in the design as an electron repeller is not 

necessary and the secondary electron repeller grid was not included. The grids constructed 

from stainless-steel plates with 0.375-in apertures and 20-by-20 wires-per-inch, 0.0118-

diameter tungsten wire mesh welded to the back face of each. A 0.50-inch disk was used 

as the Faraday plate. The two grids and Faraday plate are isolated from each other using 

0.175-inch-thick blocks of Delrin® Acetal plastic. The Faraday plate was also seated in a 
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block of Delrin to electrically isolate it from the plasma environment. The assembly was 

aligned via alumina rods, and fastened together via stainless-steel rods and nuts sleeved in 

alumina. The entrance plane of the RPA was 28.3 mm downstream of the CES. The grids 

were biased using two high-voltage amplifiers with potential signals outputted from a NI-

6361 USB DAQ. The input signals for the grid potential, and the output signal from the 

Faraday plate were input into and recorded through an Oscilloscope. 

5.2.4. Experiment and Procedures 

The procedure for the experiment was split into two parts; first a description of those 

used for the beam divergence diagnostic, these are followed by the procedures used to 

complete the beam energy diagnostic.  

The beam divergence of the CES was measured through the following procedure. The 

CES, with the Faraday stack attached, was inserted into the UHV facility and a stable 

electrospray was established using the neat IL propellant with a flowrate of 0.315 nl/s and 

an extraction potential of 1400 V. A 200-Gauss magnetic field was then applied to the 

source for 20 seconds and then removed. The collected-current telemetries on the LRP, 

SMP, SFP were measured and recorded throughout testing. The entire procedure was 

repeated for select combinations of Q and Vext using the neat IL, ILFF-20, ILFF-30 and 

ILFF-40 propellants, Table 5.1. 

The beam energy in the center axis of the electrospray was measured through the 

following steps. The CES, with RPA attached downstream concentric with the beam axis, 

was inserted into the UHV facility. The front grid and repeller grid of the RPA were 
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initially biased to 2000 V to prohibit the electrospray beam from coating the device interior 

causing electrical shorts (this is also the state of the plates during non-measurement 

periods). 

Table 5.1. Flowrates (nl/s) for given operating parameters for the beam divergence 
experiment.  

Extraction Potential (V) 
1400 1500 1600 1700 1800 1900 2000 

Pr
op

el
la

nt
 

neat IL 0.315 
0.63 

0.315 
0.63 
0.945 

0.315 
0.63 
0.945 

ILFF-20 0.47 
0.705 

0.47 
0.705 
0.94 

0.47 
0.705 
0.94 

ILFF-30 0.454 0.454 
0.636 

0.636 
0.818 

0.636 
0.818 

0.636 
0.818 

ILFF-40 0.47 0.47 
0.62 
0.78 

0.47 
0.62 
0.78 

0.62 
0.78 

A stable electrospray was then established using the neat IL propellant at a flowrate of 

0.315 nl/s and an extraction potential of 1400 V. Two energy traces were collected by 

grounding the front RPA grid, and then sweeping the repeller grid from 2000 V to 0 V at 

a slew rate of 200 V/second. After the sweep, the bias of both RPA grids was returned to 

2000 V. A 200-Gauss magnetic field was then applied to the source using the Helmholtz 

coil, two energy traces were recorded, and then the magnetic field was removed. A total of 

10 energy traces for this flowrate and extraction potential were captured, in the sequence 

of two with a 0-Gauss magnetic field applied to the source, two with 200 Gauss, two with 

0 Gauss, two with 200 Gauss, and two with 0 Gauss. The entire procedure was repeated 

for select combinations of Q and Vext using the neat IL, ILFF-20, ILFF-30 and ILFF-40 
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propellants. The combinations of Q and Vext for each propellant, along with the maximum 

front grid potential and the maximum repeller potential are given in  

Table 5.2. The maximum front grid and repeller potentials varied and were at least 

100 V greater than Vext. 

Table 5.2. Operating parameters of the CES during beam energy diagnostics. Repeller 
potential is the electrical bias potential for both the front grid and repeller plate prior to 

collecting an RPA sweep. 

ne
at

 IL
 

Extraction 
Potential (V) 1400 1500 1600 1700 
Repeller 
Potential (V) 2000 

Flowrate 
(nl/s) 

0.315 
0.63 

0.315 
0.63 
0.945 

0.315 
0.63 
0.945 0.945 

IL
FF

-2
0 

Extraction 
Potential (V) 1500 1600 1700 1800 1900 
Repeller 
Potential (V) 2000 2100 

Flowrate 
(nl/s) 

0.47 0.47 
0.705 

0.47 
0.705 
0.94 

0.47 
0.705 
0.94 0.94 

IL
FF

-3
0 

Extraction 
Potential (V) 1600 1700 1800 1900 2000 2100 
Repeller 
Potential (V) 2000 2100 2200 

Flowrate 
(nl/s) 

0.454 0.454 0.454 
0.636 
0.818 

0.454 
0.636 
0.818 

0.454 
0.636 
0.818 0.818 

IL
FF

-4
0 

Extraction 
Potential (V) 1700 1800 1900 2000 2100 
Repeller 
Potential (V) 2100 2200 2300 

Flowrate 
(nl/s) 

0.47 0.47 
0.62 
0.78 

0.47 
0.62 
0.78 

0.62 
0.78 0.78 
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5.3. Results and Discussion 

Results of the beam diagnostics experiment, and a discussion on the relevant 

observations and findings are presented below. The section begins with the results from 

the beam divergence experiment, beginning with those from neat IL control tests, and 

followed by those concerning the influence of nanoparticles and then magnetic stress. The 

section ends with results from the beam energy experiment following the same structure. 

5.3.1. Neat Ionic Liquid Electrospray Beam Divergence 

Figure 5.3.a) provides an example of the telemetries collected from the beam 

divergence experiment using neat IL as the propellant. The telemetries are for the emission 

current of the source and the currents intercepted by each of the Faraday plates, and include 

operation of the CES with and without a 200-Gauss magnetic field. The extractor plate 

current was not collected for the experiment; instead the fraction of emission current that 

was not collected on the three Faraday plates was assumed to have been stopped by the 

extractor plate. 

Figure 5.3.b) shows the current that was not intercepted by the extraction plate and a 

percent of the emission current. It showed that 85 to 100 percent of the emitted current of 

a neat IL electrospray was within a 32.0 half-angle. While this is not very well collimated 

it still meant that at least 85 percent of the emitted products were useful beyond the 

extraction region; it also set a control that was used later to compare to ILFF electrospray 

beam divergence results.  Error bars shown in Figure 5.3.b) are one standard deviation of 

the mean current.  
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Figure 5.3. a) Telemetries of the emission current and the intercepted currents measured on 
the downstream Faraday plates of the CES operating on neat IL at Q = 0.63 nl/s and 

Vext = 1500 V. The magnetic field strength applied to the CES is denoted at the top of each 
plot; dashes lines indicate temporal bounds of the applied magnetic field. b) The mean 

measured current collected on the LRP (red), SMP (green), and SFP (blue) as a percentage 
of the total emission current plotted against the extraction potential of the CES operating on 

neat IL at three flowrates. Error is one standard deviation of the percent of emission 
current. 

As the surface areas of each of collector plates LRP, SMP, and SFP were not equivalent, 

angular-resolved profiles were not an appropriate measure of divergence. Instead the 

current density as a function of angle was determined by dividing the measured currents 

on each plate by their respective collection surface area, Figure 5.3. The collection surface 

area was defined as that visible from the source via line-of sight, thus the outer radii of the 

surface area are at half-angle 32.0, 17.2, and8.44as shown in Figure 5.1.b). The 

resultant current density profile was then normalized by the current density measured on 

the SFP, since this research was only interested in changes in divergence. 

Figure 5.4. provides the current density profiles measured during CES operation plotted 

against the beam half-angle. The stepped-shape of them is the result of only recording a 
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single current across the angular range of each Faraday plate; the SFP is between half-

angles of 0° – 8.44°, the SMP is between half-angles of 8.44° – 17.2°, and the LRP is 

between half-angles 17.2° – 32.0°. Error bars shown in Figure 5.4. are on standard 

deviation of the mean current density. 

Figure 5.4. Normalized current density profile of the CES operating on neat IL with 
a) Vext = 1500 V and Q = 0.315, 0.63, and 0.945 nl/s, b) with a Q = 0.315 nl/s and Vext = 1400 V,

1500 V, and 1600 V. The SFP, SMP, LRP are between half-angles 0° - 8.44°, 8.44° - 17.2°, 
and 17.2° - 32.0°, respectively. Error is one standard deviation of the mean normalized 

current density. 

Figure 5.4.a) illustrates an increase in the current density between half-angles of 8.44° 

and 32.0° (corresponding to the collection areas of the SMP and LRP Faraday plates) when 

the flowrate is increased. Figure 5.4.b) illustrates that the extraction potential of the CES 

has no significant influence over the beam divergence. The combined observations in 

Figure 5.4. suggests that the beam broadens only during an increase in flowrate. Similar 

observations are reported for electrospray sources running, [EMIM][NTf2] propellant,[3] 

[BMIM][DCA] propellant,[43] and [EMIM][EtSO4]-HAN propellant.[116]  

Lastly, a 200-Gauss magnetic field was also applied to the neat IL electrospray, and 

through the comparison between the current density curves with and without the magnetic 
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field it was concluded that the magnetic field garnered no significant influence on the beam 

divergence, Figure 5.5. Therefore, any subsequent change in beam divergence of ILFF 

electrosprays can be attributed to the magnetic susceptibility of the propellants. Error bars 

shown in Figure 5.5. are one standard deviation of the mean current density.  

Based on the combined results of Figure 5.4. and Figure 5.5., that the CES operating 

on neat IL propellant was concluded to behaved similarly to other capillary electrospray 

sources in literature. Therefore, they were used as a control source for the results presented 

in the Sections 5.3.2. and 5.3.3., which discuss if/how the new magnetically susceptible 

propellants changed the beam divergence of the control CES electrospray.   

Figure 5.5. Normalized current density profiles of the IF CES operating on neat IL with a 
Q = 0.945 nl/s and Vext = 1600 V, with (dashed line) and without (solid line) a 200-Gauss 
magnetic field applied. Error is one standard deviation of the mean normalized current 

density. 
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5.3.2. Nanoparticle Influence on Beam Divergence of Magnetic-Field-
Free ILFF Electrospray  

As mentioned previously, no literature was found that addressed the effect colloidal 

particles have on the divergence of an electrospray beam. However, the ILFF propellants 

used in this research are known to have different electric and liquid properties induced 

through the addition of NPs to EMIM-NTf2. Specifically, an increase in wt% NPs was 

correlated to an increase in density and viscosity, and a decrease in the surface tension and 

conductivity of the propellant, Section 3.1. In a study by Gamero-Castaño which examined 

the temperature effects on the expansion of an EMIM-NTf2 electrospray beam, he showed 

that an increase in 20°C increased the half-angle of the electrospray beam by 85.7% (21- to 

39-degrees).[117] He concluded that the temperature induced beam expansion by changing 

both the electrical and liquid properties of the EMIM-NTf2. Other researchers have shown 

that the temperature of the fluid inherently changes properties of an IL propellant. 

Specifically, a 20°C increase in temperature from RT induces a 1.3% drop in density, a 

49.7% drop in viscosity, a 1.6% increase in surface tension, and a 134.8% increase in 

conductivity of EMIM-NTf2.[118] However, the effects related to specific liquid 

properties were not determined in any of these studies. Given this and the added variable 

of NPs used in this research, the results in this study could not be compared to literature. 

As such, the results on the measured effects of the beam divergence in this section are only 

comparable between the propellants used in this experiment.  

Current telemetries collected from beam divergence experiment using the ILFF 

propellants were analyzed in a similar manner as those from the neat IL. As with neat IL, 

the extractor plate current was not collected for the experiment, but instead the fraction of 
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emission current that was not collected on the three plates was assumed to have been 

stopped by the extractor plate. The results from the beam divergence experiment reveal 

that an addition of, and subsequent increase in concentration of NPs in neat IL significantly 

changed the fraction of emission current that was measured on each downstream plate, 

Figure 5.6. and Figure 5.7.   

Figure 5.6. The mean measured current collected on the LRP (red), SMP (green), and SFP 
(blue) as a percentage of the total emission current plotted against the extraction potential of 
the CES operating at three flowrates operating on a) ILFF-20, b) ILFF-30, and c) ILFF-40. 
Error is one standard deviation of the percent of emission current. The electrosprays were 

not subjected to a magnetic field. 
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The mean current collected on each of the Faraday plates as a percent of emission 

current for all ILFF propellants shown in Figure 5.6. and Figure 5.7. reveals that the 

flowrate also had significant influence on magnetic-field-free ILFF electrosprays. 

Furthermore, unlike analogous neat IL results (Figure 5.3.b)), the extraction voltage also 

affects the percent of the emission current collected on the Faraday stack. Whereas the total 

fraction of the emission current intercepted by the Faraday plate during neat IL electrospray 

operation was invariant of the extraction potential, an increase in extraction potential of the 

source running on ILFF-20 or ILFF-40 corresponded to a decrease in the total fraction of 

emission current from all three plates; ILFF-30 propellant was invariant to extraction 

potential. Quantitatively, the total amount of current intercepted by all three Faraday plates 

when the source operated on neat IL was approximately 100-percent of the emission 

current, while the total amount of current intercepted by the three Faraday plates when the 

source operated on the ILFF propellants was typically less than 100-percent of the emission 

current. Note: at times the data reports over 100-percent on the emission current, however 

it was always less than 110-percent of the emission current and is most likely a systematic 

error of the high voltage ammeter.  
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Figure 5.7. Normalized current density profile of the CES plotted against the half-angle of 
downstream beam, where 0-degrees is the electrospray beam center axis. a) ILFF-20, b) 

ILFF-30 and c) ILFF-40 propellants. The increase in wt% NPs in the neat IL from a) to c) is 
correlated to an increase in beam divergence, i.e. the relative current density at higher half 

angles increases from a) to c).  Error is one standard deviation of the mean normalized 
current density. 

A change in flowrate affected each ILFF propellant differently. As seen in Figure 

5.6.a), the fraction of the emission current intercepted by the LRP, SMP, and SFP using 

the ILFF-20 propellant decreased with an increase in flowrate. The fraction of emission 

current intercepted by the LRP, SMP and SRP using ILFF-30 and ILFF-40 propellants 

(Figure 5.6.b) and c), respectively) either remain constant or decreased with an increase in 
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flowrate. Quantitatively, the current intercepted by the Faraday stack when the source 

operated on ILFF-20 at Q = 0.47 nl/s was approximately 100-percent of the emission 

current; at Q = 0.94 nl/s the total current measured on the Faraday stack was between 68 

and 76 percent of the emission current. When the source operated on ILFF-30 or ILFF-40 

propellants the total current on the Faraday stack as a percent of emission current was 

considerably reduced; it was 29- to 57-percent for ILFF-30 at flowrates of 0.47 and 0.818 

nl/s respectively, and between 27- to 67-percent for ILFF-40, for flowrates of 0.47 and 0.78 

nl/s, respectively. 

The significant decrease in the total fraction of the beam intercepted by the three 

Faraday plates is indicative of a reduction in the current traveling within the portion of the 

electrospray beam intercepted by the Faraday stack. This reduction may be the 

consequence of an increasingly divergent electrospray beam wherein a larger fraction of 

the current was at half-angles greater than those collected by the LRP (θ > 32.0°). 

Alternatively, the beam may be increasingly blocked by the extractor plate. However, each 

of these possibilities cannot be confirmed as the current was not measured on the extraction 

plate, and the largest half-angle captured by the LRP is 32.0°.  

The fraction of the emission current of the source that was not intercepted by the 

extractor plate (un-intercepted current fraction) was not directly tied to the weight-percent 

NPs in the IL, i.e. the un-intercepted current fraction was the smallest for the source 

operating on the ILFF-30 propellant, not ILFF-40. The cause of this observation was not 

determined, though it may be the result of the NPs interfering with the emission process 

differently for each of the solutions.  
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The current density profiles for each ILFF electrospray at various operating settings 

(Vext, Q) were calculated using the same method used for the current density profiles of the 

neat IL, Figure 5.4. and Figure 5.5., to compare and quantify the nanoparticle influence on 

beam divergence. A selection of them for constant Q and three Vext for each ILFF propellant 

are shown in Figure 5.7. to illustrate the effect of the Vext on the beam divergence. Figure 

5.7. a) and b) show that Vext was insignificant to the beam divergence of ILFF-20 and 

ILFF-30 electrosprays. However, Figure 5.7.c) shows that an increase of 100-V in Vext 

shifted the current density profile of ILFF-40 electrosprays towards the center of the beam; 

this may come from the extraction potential changing the cone shape, as described by 

Morad et al.,[119] but no images of the Taylor cone were taken during the experiment to 

verify this hypothesis. No other statistically significant results exist that show a dependence 

on Vext but, this could be due to the uncertainty in the current density profile (error shading 

in Figure 5.7.) which stemmed from fluctuations in the emission current, Figure 5.8.a).  

5.3.3. Magnetic Influence on Beam Divergence of Ionic Liquid 
Ferrofluid Electrospray 

The current telemetries of the ILFF-20 electrospray operating at 0.47 nl/s reveal that 

the magnetic field has significant influence on the emission current and the SMP current, 

Figure 5.8. a). A possible reason that only the SMP was affected by the magnetic field 

application was that it had a larger collection area than the SFP, and was located at lower 

half-angles than the LRP. This meant the SMP collected the highest current fraction of the 

electrospray beam relative to the emission current. Thus, any change in emission current is 

most readily seen in the SMP. Furthermore, the SMP current appears to be the most 
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affected in the current density profiles of Figure 5.8.c) and d), due to the normalization of 

each profile to the current density of the SFP. 

Figure 5.8. a) Telemetries of the emission current and the intercepted currents measured on 
the downstream Faraday plates of the CES operating on ILFF-20 at Q = 0.47 nl/s and Vext = 
1600 V. The magnetic field strength applied to the CES is denoted at the top of each plot; 

dashes lines indicate temporal bounds of the applied magnetic field.  b) Normalized current 
density profiles of the IF CES plotted against the half-angle of an ILFF-20 electrospray 

running at Q = 0.47 nl/s and extV  = 1600 V, and c) Normalized current density profiles of the 
IF CES plotted against the half-angle of an ILFF-30 electrospray running at Q = 0.454 nl/s 
and extV  = 1600 V. Error is one standard deviation of the mean normalized current density. 

0-degrees is the electrospray beam center axis. 
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The magnetic field influence on beam divergence was quantified by analyzing the 

current densities of the ILFF-20 and ILFF-30 electrosprays with and without a 200-Gauss 

magnetic field applied to the source. As Figure 5.8.b) and c) show, subjecting the 

electrospray to the magnetic field acts to constrict the electrospray beam, i.e. the current 

density at larger half-angles is reduced relative to the current density at smaller half-angles 

when 200 Gauss is applied to the electrospray. This is only statistically evident for several 

(Q, Vext) settings of the CES running on ILFF-20 and ILFF-30. Statistically insignificant 

results at these operational settings were believed to stem from the fluctuations in emission 

current described in Section 4.3.3.a. The complete set of plots of current densities collected 

for the CES operating on the neat IL, ILFF-20, ILFF-30, and ILFF-40 propellants are 

included in Appendix C.  

Literature on the divergence of a ferrofluid electrospray beam completed by Jackson 

and King  found that a non- uniform magnetic field applied to an electrospray of IL with 

magnetic nanoparticles tightened the beam.[110] Therefore, the expectation was for the 

beam to tighten. However, further analysis by Jackson and King showed that the free space 

trajectory perturbation by magnetic forces was inconsequential; [120] this was 

complimented with a similar analysis of Lorentz force on charged particles and their 

subsequent Larmor radius that is included in Appendix E. Another potential cause of the 

beam tightening could be the Kelvin force density, 0M H  . However, as the testing was

conducting along the center z-axis of a Helmholtz coil, 0H z ∂ ∂  and 0H r ∂ ∂ , and 

consequently 0 0M H   .
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If the Lorentz and Kelvin forces on the particles of the emitted beam are not the 

mechanism for the change in beam divergence, then a change in emission site geometry 

induced by the magnetic field may be the cause of the change.  A separate study by Jackson 

et al. which examined the onset potential of the parent ILFF demonstrated that a magnetic 

force changes the geometry of the Taylor cone during capillary emission;[94]  an image of 

this shape change is shown in Fig. 11. This was a consequence of the magnetic normal 

traction and the fluid magnetic pressure simultaneously acting to change the shape of the 

cone-jet region of the meniscus. However, in-situ imaging was not feasible during this 

study due to the Helmholtz coil location, so the effect was not verified for the ILFF 

solutions. While in-situ imaging was not in the scope of this research, it is likely that the 

cone-jet region of the magnetically enhanced sprays differed from that of the purely 

electric. 

5.3.4. Neat Ionic Liquid Electrospray Beam Energy

A set of the results from the RPA diagnostic experiment on a magnetic-stress-free neat 

IL electrospray from the CES are presented in Figure 5.9. Figure 5.9.a) shows the 

normalized RPA traces of the source emitting a neat IL electrospray at three flowrates, 

while Figure 5.9.b) shows dI/dV of the RPA current traces; i.e. the first derivative of the 

traces in Figure 5.9.a). Figure 5.9.b) reveals that the CES IL electrospray emits ions with 

energy that fall within a single energy distribution, regardless of flowrate and extraction 

potential. These results agree with those of other capillary electrosprays presented in 

literature.[1, 55, 95] Another observation from Figure 5.9. is that the tails of the dI/dV 

distributions had energies higher than Vext. This is observed in literature and is suggested 
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to be the effect of the combined droplet collection from the beam and secondary electron 

emission.[56, 95]  The complete set of RPA traces for neat IL electrosprays running at 

several combinations of Q and Vext are provided in Appendix F. 

Figure 5.9. a) RPA traces of neat IL electrospray, and b) normalized derivatives of the same 
RPA traces; extV = 1600 V and Q = 0.315, 0.63, and 0.945 nl/s. There was no magnetic field 

applied to the source in either a) or b). 

5.3.5. Nanoparticle Influence on Beam Energy of an Ionic Liquid 
Ferrofluid Electrospray 

Several of the RPA traces of each of the ILFF propellants that were collected at 

combinations of Q and Vext are provided in Figure 5.10. The remaining traces are included 

in Appendix F. From these traces, it was concluded that NPs were had a dramatic effect on 

the energy distributions of the electrospray beam. This was most easily illustrated by 

comparison of the most probable ion energy, ion  for each of the electrosprays. ion , 

as a percent of Vext, was calculated for multiple (Q, Vext) settings using each of the ILFF 

electrosprays subjected to zero magnetic stress, Figure 5.11. As shown in (2.14), this 

quantity was a good estimate of the voltage utilization efficiency, V , of the CES. The

CES operated with the highest V  during low flowrate and high extraction potential,
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(Figure 5.11.). Similar results are observed in work by Miller et al., wherein they found 

that the decrease in energy correlated to the cone extending further into the electric field 

during higher flowrates.[89] Lozano also observed a drop in energy correlated to an 

increase in flowrate.[1] In both studies the measured energy as a percent of the overall 

extraction potential is 85- to 90-percent. 

Figure 5.10. Normalized derivatives of the RPA traces collected from the IF CES operating 
on a) ILFF 20, b) ILFF 30, and c) ILFF 40 propellants. There was no magnetic field applied 

to the source. 

The electrospray beam with NPs also appeared to be poly-energetic; i.e. two energy 

distributions existed for electrosprays of the ILFF-30 and ILFF-40 propellants, Figure 5.10. 

b) and c). One above 75-percent of the extraction potential and one below 50-percent of
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the extraction potential, identified henceforth as the primary and secondary populations, 

respectively. The energy of the primary population of particles in ILFF electrosprays was 

similar to those in neat IL electrospray; as Figure 5.11. shows, V  of the ILFF electrosprays

was 0.75 to 0.9, depending on propellant and flowrate, which is identical to the range for 

neat IL V . Significant flowrate dependence was only observed in the V  of the primary

populations for ILFF-30 and ILFF-40 electrospray, and resulted in a general reduction in 

beam energy, (green and blue solid square of Figure 5.11.). 

Figure 5.11. Voltage utilization efficiency for magnetic-field-free electrosprays from the CES 
operating on ILFF-20, ILFF-30, and ILFF-40 propellants plotted against the Q. Error-bars 
are removed for clarity but are 1 to 4.5 percent change for ILFF-20, 2 to 10 percent change 

for ILFF-30, and 1.5 to 6 percent change for ILFF-40.  

The secondary population was distinguishing feature between the energy distributions 

of ILFF and neat IL electrosprays, and was only observed when using ILFF-30 and 

ILFF-40 propellants. These distributions were centered between repeller potentials of -500 

to -700 V (or 30- to 50-percent of Vext), Figure 5.10.b) and c). As the secondary populations 

only appeared when the CES was operating on ILFF-30 and ILFF-40, they were likely the 
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result of NPs. However, as noted in Section 3.1., the addition of NPs changed the density, 

surface tension, viscosity and conductivity of the neat IL, and were also a physical presence 

in the spray, therefore, the mechanism that produced low energy particles could not be 

differentiated from the other effects of the NPs. A mechanism that could produce the 

secondary population is the fragmentation of ions from the emitted NPs within the 

extraction field of the source. In a study on the beam energy of an externally wetted EMIM-

BF4 electrospray source, Miller and Lozano concluded that similar poly-energetic RPA 

traces were the result of fragmentation of dimer ion species into monomer species within 

the extraction field.[44] Thus the lower-energy, secondary populations presented in Figure 

5.10. could be the consequence of ion species fragmenting from droplets or off NPs 

partway through the extraction field of the source. Since this population does not appear in 

the RPA traces of neat IL or ILFF-20 electrosprays, this hypothesis is possible, but it would 

require future testing and/or modelling to confirm. 

5.3.6. Magnetic Influence on Beam Energy 

The magnetic influence on the beam energy of the neat IL electrospray was negligible. 

This was expected as the neat IL propellant was non-magnetic and the effect of the 

magnetic field on the moving ions emitted from the source was already found to be 

insignificant (Section 5.3.1.). This finding provided a baseline for adding magnetic stress 

to the electrosprays of ILFF propellants.  

The magnetic stress significantly influenced the RPA traces collected from the CES 

operating on the ILFF propellants, Figure 5.12. Furthermore, by comparing the V  of the



www.manaraa.com

146 

electrospray with and without a 200-Gauss magnetic field, Figure 5.11. and Figure 5.13., 

respectively, the application of a magnetic field was concluded to consistently increase the 

energy of the primary population for various flowrates and extraction potentials within the 

stability island of all ILFF propellants. The magnetic field also increased in the ion of 

the secondary population when it appeared in the RPA trace, Figure 5.12.  

The beam energy of the primary population for the CES operating on the ILFF-30 

propellant was most affected by the magnetic field compared to ILFF-20 or ILFF-40 

propellants. At lower flowrates, the magnetic field consistently increased the primary 

population energy by more than 10-percent when compared to spray during a 0-Gauss 

magnetic field. The fact that the magnetic influence affected the beam energy of the 

ILFF-30 electrosprays the most was interesting as the magnetic influence on the beam 

divergence was also the largest when using the ILFF-30 propellant. This could mean for 

the specific wt% of NPs in ILFF-30 propellant the magnetic susceptibility of the 

nanoparticles dominates other potential influences caused by the addition of NPs, i.e. 

changes in density, surface tension, conductivity and viscosity.  

The general increase in the energy of both populations caused by the magnetic field 

application suggests that the emission site location of all charged particles reacted to the 

application of the magnetic field. The shape of the Taylor cone that formed during ILFF 

electrospray emission was already observed to change significantly, Figure 4.5. Therefore, 

it was likely some effect related to this shape change that induced the increase in most 

probable ion energy, though the specific mechanism was not determined in this research. 
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Remaining RPA traces for propellants operating with a 200-Gauss magnetic field are 

provided in Appendix F. 

Figure 5.12. RPA traces of an electrospray acquired from the CES with (blue) and without 
(red) a 200-Gauss magnetic field applied. Each trace shown here was an average of two RPA 
sweeps (light blue and light red). The propellants used are ILFF-20 operating at with Vext = 
1700 V, and flowrates, Q, of (a) 0.47 nl/s and (b) 0.705 nl/s; ILFF-30 operating with an Vext = 
1800 V and Q of (c) 0.454 and (d) 0.636 nl/s; and ILFF-40 with an Vext = 1900 V and Q of (e) 

0.62 and (f) 0.78 nl/s. 
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Figure 5.13. Voltage utilization efficiency for of magnetically-stress electrosprays from the 
CES operating on ILFF-20, ILFF-30, and ILFF-40 propellants plotted against the Q. Error-

bars are removed for clarity but are 1 to 4.5 percent change for ILFF-20, 2 to 10 percent 
change for ILFF-30, and 1.5 to 6 percent change for ILFF-40.  

5.4. Conclusions: Beam Diagnostics 

The results presented in Chapter 5 showed that the magnetic NPs and magnetic stress 

had significant influence the divergence and energy of an electrospray beam from the CES 

operating on neat IL, ILFF-20, ILFF-30, and ILFF-40. 

The NPs influenced both the beam divergence and beam energy of the neat IL 

electrospray. The current density at higher half-angles of the ILFF-30 and ILFF-40 

electrosprays (higher wt% NPs) was significantly higher than electrosprays of neat IL or 

ILFF-20 propellants. Furthermore, the percent of the electrospray beam not intercepted by 

the extractor plate was significantly less for the ILFF-30 and ILFF-40 propellants. These 

two observations led us to conclude propellants with higher wt% NPs produced broader 
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electrospray beams. The electrosprays of ILFF-30 and ILFF-40 propellants also had ion  

that were consistently lower, relative to the extraction potential, than those of the neat IL 

and ILFF-20 electrosprays. Furthermore, a second energy population was recorded for the 

electrosprays using propellants with higher wt% NPs, and was 30 to 50 percent of the 

extraction potential. 

The effect magnetic stress had on the beam divergence was only statistically significant 

for ILFF-20 and ILFF-30 propellants. When applied, the magnetic field either broadened 

or tightened the beam depending on the propellant, flowrate, and extraction potential. The 

most significant results were measured while running the ILFF-20 propellant at 0.47 nl/s 

and 1600 V, where the application of the magnetic field increased the fraction of the current 

in the center of the beam by a summed total of 25 percent. 

Magnetic stress had a significant effect on the ion  of the emitted species from the 

CES operating on the ILFF propellants, and was generally increased for all electrosprays. 

The electrosprays of ILFF-30 were most affected, increasing by upwards of 16 percent for 

multiple operating conditions. 

An obstacle that was discovered during the beam diagnostics experiments was the poor 

angular resolution of the Faraday stack. This made it impossible to determine the beam 

divergence with any meaningful resolution when concerned with efficiency of the beam 

emission. This could be determined in a future investigation by using a Faraday stack with 

more plates, or creating a setup that provides rotation of both the electrospray source and 

magnetic field source relative to the diagnostic tools. 
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Chapter 6 

Mass Spectrometry of An Ionic Liquid Ferrofluid 

Capillary Electrospray 

The following chapter details the experiments in which mass spectra of the CES 

operating on the ILFF propellants were collected and analyzed to understand the influence 

that NPs and magnetic stress had on the composition of the emitted electrospray. The 

motivation and goal of the experiments presented in the chapter are described first, 

followed by the apparatuses, including the TOF-MS, and the procedures used to collect 

spectra from the source. The resulting spectra are then presented and analyzed to determine 

the composition of the beam, including the desired measurement of magnetic NPs, and how 

they affect the electrospray. The influence of magnetic stress on the spectra is then 

presented and followed by conclusions from the experiments to end the chapter. 

6.1. Motivation and Goal 

Mass spectrometry is a common technique for the measurement of IL capillary 

electrosprays.[3, 33, 49, 58, 121-124] Within, these studies researchers showed that the 

ion/droplet composition of IL electrosprays have dependence on the flowrate,[43, 58] 

propellant,[33, 124] and temperature.[3, 123] The ion/droplet dependence on the latter two 

are the consequence of differences in liquid and electrical properties caused by change in 

propellant or temperature. Literature which focused on magnetically influencing an 

electrospray source within mass spectrometry was not extensive. All the studies found on 
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the subject related to researchers that placed electrospray ionization sources into the strong 

magnetic fields (1 to 3 T) of Fourier transform ion cyclotron resonance (FTICR) mass 

spectrometers to extend the mass-range that the device can measure.[125-128] The 

electrosprayed fluids were low-conductivity, aqueous protein solutions.  

Therefore, using the mass spectrometry technique to examine composition of ILFF 

propellants presented a unique study, owing to their superparamagnetic NPs, which were 

shown to influence both liquid and electrical properties owing to the addition of NPs to the 

carrier neat IL (Section 3.1.) and provided the means to be influenced by the magnetic field 

(Chapter 4 and Chapter 5.).  Furthermore, because the magnetically susceptible NPs existed 

in a solid phase, (which have been observed to emit with the electrosprayed IL),[46] they 

must affect the emission products measured by a mass spectrometer. Multiple studies on 

nanoparticles within electrosprays of various propellants have been completed, including 

several that examined ceramic and gold NP suspensions in electrosprays and the relics from 

the electrospraying process,[98, 129, 130] one that examined how the nanoparticle 

diameter affected spray characteristics,[98] one that examined charge build-up on the 

surface of NPs in volatile propellants,[99] and the aforementioned studies on ILFFs by 

research teams at Yale University[107] and Michigan Tech.[13, 94, 131] However, only 

the latter two research teams used non-volatile liquids, and only Michigan Tech used 

propellants with high conductivities. Furthermore, none of these studies examined the 

colloids within a mass spectrometer to reconcile the m/q of the NPs, or generally number 

density within the electrospray beam.  
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As such, the desire of these experiments was to measure the NPs m/q and number 

density within the electrospray beam, and to understand how they impacted the 

composition of a magnetic-field-free and magnetically-stressed electrospray that motivated 

the TOF-MS experiments described in this chapter. The goals of the experiments were 

threefold: (1) determine the mass composition of an electrospray using an IL with 

suspended magnetic nanoparticles; (2) measure the NPs present in the magnetic-field-free 

and magnetically-stressed electrospray beam; (3) determine how an applied magnetic field 

changed the composition of an ILFF electrospray beam compared to magnetic-field-free 

spray. (Another experiment was conducted which examined the composition of the ILFF 

electrosprays operating at the lower bound of the stability island; this was not within the 

goals of this chapter, however, the results and discussion from the study are presented in 

Appendix G.) 

6.2. Measuring Nanoparticles in a Mass Spectrometer 

Prior to attempting the measurement of NPs in magnetic-field-free and/or 

magnetically-stressed electrosprays, some discussion on how the NP would appear in a 

TOF mass spectrum was required to determine if/how the measurement was possible. 

Specifically, several questions required attention: 1) What an emitted NP would look like? 

2) What artifact/s would a population of NPs produce in a TOF mass spectrum?

To answer the first question literature on the ferrofluids designed for this research 

(Section 2.2.1.) was revisited.[12] During the synthesis of their ILFFs Jain et al. determined 

the hydrodynamic diameter of the NPs before and after coating the NP with the block 
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copolymer to stabilize the NPs in the carrier IL. Comparison of the diameters of the coated 

and uncoated NPs revealed that the copolymer chains extended ~15 nm from the NP 

surface. Therefore, coated, 30-nm-diameter NPs in the ILFF propellants of this research 

would have hydrodynamic diameters of 60 nm while in the carrier IL. How the 

electrospraying process affects this diameter was unknown; however, since the copolymer 

coating was selected for its solubility in the neat IL EMIM-NTf2, it was assumed that neat 

IL would remain with the NP during emission, at least to the extent that it solvated the 

copolymer chain, i.e. the hydrodynamic diameter of a coated NP. Therefore, the smallest 

form that a single emitted NP would take was the summed mass and charge of a 30-nm-

diameter NP coated in a 15-nm layer of IL. 

The range of m/q for this hypothetical emitted NP was determined using two 

assumptions, (1) the charge of the Neat IL coating the NP followed the Rayleigh-limit 

model, (2.12), (2) the only charge carriers were the ions of the neat IL; i.e. the solid NP 

was neutral. The mass of the of the IL-coated NP was calculated to be 6.14E-19 kg, or 370 

million amu, using the densities of the NP, 3 2 5242Fe O   kg/m3, and the neat IL EMIM-

NTf2, 1532IL   kg/m3, (The density of IL was used to determine the mass of the entire 

IL/copolymer coating density since there was little difference between the densities of 

PMMA, 1180PMMA   kg/m3, and neat IL, and the fraction of each in the NP coating was 

unknown). The charge of the emitted NP was estimated via the Rayleigh limit, which is 

only dependent on the stress balance across the surface the neat IL. Therefore, the solid NP 

was inconsequential to the calculation, the 60-nm-diameter, IL-coated NP was treated as a 

60-nm-diameter neat IL droplet. The Rayleigh limit for this sized EMIM-NTf2 droplet,



www.manaraa.com

155 

given the properties presented in Section 3.1., was 5.76E-16 Coulombs, or approximately 

1437 e. Prior literature shows that nanodroplets emitted from electrospray have charge 44% 

of the Rayleigh limit, or in this instance 632 e.[58] The ratio of the estimated mass and 

charge of the emitted NP set a lower bound of the m/q range in which a signal identifying 

the NP in the TOF spectrum would begin to appear, ~600,000 amu/e. Potentially, the 

emitted NP, could have a larger mass and/or the lower charge, both of which would mean 

the NP would have large m/q. 

Acknowledging the m/q range of an electrosprayed NP estimated from the above 

discussion the final question became straight-forward: was there a TOF system that could 

measure masses of electrospray products in an m/q range greater than 500,000 amu/e? As 

discussed in the literature review, Miller et al. developed a method to detect masses of 

>100,000 amu/e, while maintaining high resolution within the spectra. This meant that the 

measurement of NPs within the electrospray beam was technically feasible; the results 

presented in this chapter will verify whether this was the case. 

6.3. Apparatus and Procedure 

Three experiments were used to determine the mass composition of the electrosprays 

from the CES; the neat IL electrospray mass spectrometry (ILMS) experiment, the 

magnetic-field-free ILFF electrospray mass spectrometry (IFMS) experiment, and the 

magnetically-stressed ILFF electrospray mass spectrometry (IFMS-B) experiment. The 

procedures of each are outlined in Section 6.3.2. The facility used to measure the mass 

composition was the AFRL TOF-MS described in Section 3.6. The TOF-MS diagnostic 
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and equipment used to power the source and TOF optics are described below. The 

propellants used in the experiment Neat IL, ILFF-10, ILFF-20, ILFF-30, and ILFF-40 

propellants were used. The HC-B Helmholtz coil applied a magnetic field to the source 

when necessary. 

6.3.1. Summed Time-of-Flight Mass Spectrum 

The DC offset potential on the pulse plates transformed the instrument into an energy 

sensitive analyzer. Simulations have shown that ions with residual axial kinetic energies of 

greater than 20 eV, regardless of m/q, cannot traverse the flight tube without collision with 

the instrument walls (Appendix H.). The wide range of axial kinetic energies at which ion 

and droplet species are emitted means that only those particles within a small energy 

difference from the pulsing plates are slowed properly for entrance into the flight tube, (see 

Miller et al. for further discussion on this topic[58]). To ensure the measurement of most 

of the emitted particles, spectra needed to be collected for varying pulsing-plate potentials 

corresponding to varying particle energies, i.e. particles with varying energy defects. 

(Energy defect was defined as the difference between the axial kinetic energy of a particle 

and electrospray bias potential.) This was achieved by decreasing the pulsing plate bias in 

50-V increments from a maximum of 850 V (equal to an energy defect of 50 eV for a

particle) to the bias that had a Faraday current of 50 percent of the maximum magnitude 

(i.e. 50 percent of the Faraday cup current magnitude when the pulsing plates were at 

ground) and/or provided a mass spectrum that had measurable droplet distributions. (Note: 

Neat IL spectrum were taken at 100-V increments as the focus of this study was the ILFF 

propellants). As this work was not focused on identifying those ions emitted at various 
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energy defects, the spectrum taken at each energy defect for a given flow rate were directly 

summed to approximate the entire mass spectrum of the emitter. Furthermore, the summed 

spectra would assist in observing distributions with relatively low intensity, (namely the 

desired NPs in the ILFF propellants). This summation was termed the summed time-of-

flight mass spectrum. An example of how one of these was created, and a discussion on 

what may be omitted in the process, is provided in Appendix I. 

6.3.2. Experimental Procedures 

The procedures of the three experiments are described below. First, the source 

operation for each experiment is presented, including the settings for stable emission. Next 

the general procedure used operate the TOF-MS is detailed. The section ends with specific 

TOF-MS settings used in each experiment.  

The ILMS experiment used neat IL as the propellant and followed the procedures 

outlined in Section 4.3.2.b. to establish electrospray emission. The experiment was split 

into two parts, ILMS-B which observed the effect a magnetic field had on the neat IL 

electrospray, and ILMS-Sum which examined the summed TOF mass spectra of magnetic-

field-free IL electrospray. Vext = 1850 V and Q = 0.315, 0.63, 0.945, and 1.26 nl/s for the 

magnetically-stressed IL electrospray, and Vext = 1800 V and Q = 0.63 and 0.945 nl/s for 

the magnetic-field-free IL electrospray.  The CES was rebuilt between ILMS-B and ILMS-

Sum; the rebuilt source was used in the remaining two ILFF experiments. Both IFNB-Exp 

and IFB-Exp used ILFF-10, ILFF-20, ILFF-30, and ILFF-40 propellants and followed the 

procedures in Section 4.3.2.b. to establish electrospray emission. The flowrates and 
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extraction potentials used to produce electrosprays of each propellant are given in Table 

6.1. 

Table 6.1. Vial pressures, flowrates and pulsing plate potentials used in the ILFF mass 
spectrometer experiments.  

ILFF 
Solution 

Flowrate 
(nl/s) 

Extraction 
Potential 

(V) 

ILFF-10 
0.52 1800 
0.78 1800 
1.04 1850 

ILFF-20 
0.47 1750 
0.705 1850 
0.94 1850 

ILFF-30 
0.54 1700 
0.72 1750 
0.9 1850 

ILFF-40 0.54 1750 

 The general procedure with which TOF spectrum were collected was as follows: once 

stable electrospray emission was established the optics were optimized to provide 

maximum current signal on the Faraday cup. The parallel plates were then pulsed and ions 

were introduced into the TOF flight tube and subsequently recorded by the MCP. The pulse 

width greatly affects the size of particles gated into the chamber, as heavy particles must 

fully escape the extraction region before the end of the pulse to be recorded. As a result, 

the pulse length used for these experiments was 100 μs to allow particles up to 1,000,000 

amu/e, which was an expected range of IL droplet distributions and the NPs within the 

ILFF propellants. The pulse width and magnitude were 10 μs and 400V, respectively, for 

the magnetically-stressed part of The ILMS experiment (which was not concerned with the 
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larger particles in the electrospray). The pulse width and magnitude were 100 μs and 400V, 

respectively, for the magnetic-field-free part of ILMS, IFNB-Exp, and IFB-Exp. For all 

experiments, a single mass spectrum consisted of 50,000 pulse cycles collected at a rate of 

200 Hz. 

In ILMS-B, four mass spectra of a magnetic-field-free electrospray for a specific 

flowrate were collected at a single pulsing-plate potential corresponding to an energy 

defect of 260 eV; this was followed immediately with the collection of a single spectrum 

while a 200-Gauss magnetic field was applied to the source. For ILMS-Sum, a single 

spectrum was collected for each energy defect between 600 eV and 100 eV, at 100-eV 

increments, and a final spectrum an energy defect of 50 eV; the was completed for 

flowrates of 0.63 and 0.945 nl/s.  

The summed TOF mass spectra of IFNB-Exp and IFB-Exp were collected in sequence 

and were collected for energy defects between 350 eV to 50 eV, at 50 eV intervals and the 

flowrates listed in Table 6.1. The ion peaks necessary for converting the TOF axis to an 

m/q axis were absent in spectra collected for energy defects greater that 350 eV, and were 

not included in the summed TOF mass spectra. For each energy defect one mass spectrum 

was collected while the electrospray source operated without an applied magnetic field. 

This was followed immediately by a spectrum while a 200-Gauss magnetic field was 

applied to the source. A final spectrum was collected after the removal of the magnetic 

field to verify reproducibility of the mass spectra taken at the same operating conditions. 

Cooling periods for the HC-B were on the order of 10 minutes and were required between 

the collection of spectrum with the 200-Gauss magnetic field. As time was a limiting factor 
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in the experiment, the cooling time of the HC-B precluded acquisition of more than a single 

mass spectrum of magnetically-stressed electrosprays per operating condition. 

6.4. Results and Discussion 

The results of the mass spectrometry experiments included the mass spectra of a IL 

electrospray, which provided the control for the study, and the summed TOF mass spectra 

of magnetic-field-free and magnetically-stressed electrosprays of each ILFF propellant, 

which were analyzed with respect to the goals established at the start of the chapter. The 

section begins with a discussion the intensity axis and repeatability of TOF spectral 

measurements which were crucial to analyses of the mass spectra. This is followed by the 

discussion of results from control experiment (ILMS). Then a discussion about the NP 

within the summed TOF mass spectra collected in these experiments. Finally, the mass 

spectra of the ILFF electrosprays is presented, analyzed, and discussed with attention paid 

to the influences of the NPs within the propellants, and the magnetic stress applied to the 

electrosprays. For the remainder of the chapter ion species will be referred to as n = 0, 1, 

2, 3, etc. to define the number of cation-anion pairs attached to a single EMIM+ cation, i.e. 

[EMIM][NTf2]n EMIM+. For example, n = 2 is the [EMIM][NTf2]2 EMIM+ ion species. 

6.4.1. Intensity Axis and Spectra Repeatability 

The intensities of the peaks in mass spectra can be a reasonable method to compare 

multiple scans and realize changes within the beam of the electrospray. However, there is 

uncertainty on the repeatability of the peak intensities between individual spectra. Four 

spectra collected from a ILFF-10 electrospray operating 0.52 nl/s are presented in Figure 
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6.1. to illustrate an example of the variation in peak intensity for a specific ion species over 

multiple spectra collected at the same operating conditions. Variability in peak intensity 

between spectra meant the electrospray emission was not temporally constant, while 

variability in the ratio of primary peak intensities, (Intensity n = 1):(Intensity n = 0), 

revealed whether the relative composition of the electrospray was temporally constant.  

Figure 6.1. Individual scans of TOF-MS for an ILFF-10 electrospray operating at 
Q = 0.52 nl/s. Spectrum 1 and 2 were collected before a magnetic field was added to the 
source; Spectrum 4 and 5 were collected after the magnetic field was removed from the 

source. (Scan 3 was collected during magnetic field application and is not shown). 

Therefore, repeatability between spectra was determined by collecting at least two full 

mass spectra (those consisting of 50,000 scans) for each energy defect while operating a 

magnetic-field-free electrospray and comparing the magnitude of the n = 0 peak intensities, 

and the ratio of peak intensities, of each mass spectrum. The variability of both the peak 

intensity and the peak intensity ratio between the two (or more) spectra collected at energy 

defect were calculated as one standard deviation from the average. Figure 6.2.a) and b) 
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give the standard deviation as a percentage of peak intensity and peak intensity ratio, 

respectively, for each ion energy at the lowest flowrate of each propellant. The standard 

deviations provide a measure of repeatability during collection of mass spectra. Therefore, 

the conclusions based on the comparisons of different spectra include this variability, and 

is illustrated as ±error in the subsequent figures that use the TOF-MS data.  

Figure 6.2. Standard deviation as a percentage of (a) average peak intensity, (b) average 
peak intensity ratio of mass spectra collected under the same conditions. 

6.4.2. Mass Spectrometry of Neat Ionic Liquid Capillary Electrospray 

The ILMS experiment produced two sets of TOF mass spectra of the CES neat IL 

electrospray and were used as the control during the analysis of ILFF mass spectra. 

ILMS-B produced a set of mass spectra collected for a single energy defect which 

corresponded to the pulsing-plate potential producing the highest signal on the Faraday cup 

prior to entrance into the TOF flight tube. The interest of ILMS-B was to measure the 

effect, if any, the magnetic field had on the spectra. The four spectra collected from a 

magnetic-field-free electrospray were averaged to produce a single spectrum for each 

flowrate (Q = 0.315, 0.63, 0.945, 1.26 nl/s), shown in Figure 6.3.a); the spectra collected 
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from magnetically-stressed electrosprays operating at each flowrate are shown in Figure 

6.3.b). The mass peaks denoted in all the neat IL spectra are the cation species, EMIM+ and 

[EMIM-NTf2]- EMIM+
2 [EMIM-NTf2]-

2 EMIM+
3, [EMIM-NTf2]-

3 EMIM+
4, [EMIM-

NTf2]-
4 EMIM+

5, [EMIM-NTf2]-
5 EMIM+

6, and [EMIM-NTf2]-
6 EMIM+

7, denoted as 

n = 0, 1, 2, 3, 4, 5, and 6, respectively, in Figure 6.3.; heavier ion species also existed in 

the beam (n = 12 was the heaviest species observed). Large mass distributions also exist in 

each of the neat IL spectra and are presented as the inset plots of Figure 6.3.a). and Figure 

6.3.b). The data in the inset plots were put through a binomial smoothing algorithm to ease 

comparison.  

Comparison between the magnetic-field-free and magnetically-stressed spectra, Figure 

6.3., revealed the insignificance that the magnetic field had on the m/q composition or 

intensity of the emitted masses. This meant that any differences in the m/q or intensity of 

masses of ILFF spectra with and without a magnetic field are only an effect of the magnetic 

field acting on the added nanoparticles, not the base IL, of the ferrofluid. Also observed in 

Figure 6.3. were trends in the peak intensity and droplet distributions which correlated to 

the flowrate of the neat IL electrospray. This was in line with studies on EMIM-NTf2 by 

Miller et al., wherein a flowrate increase reduced the intensity of the ion peaks, and shifted 

the center m/q of the two droplet distributions.[58] Miller et al. concluded that the shift in 

the large droplet distribution was a consequence of the location of droplet birth and 

coincidently their energy. 
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Figure 6.3. Neat IL summed mass spectra of the CES with an energy defect of 260 eV and a) 
zero magnetic field, b) a 200-Gauss magnetic field applied to the source. The spectra in the 
low-mass plot (0-5000 amu/e) were shifted by artificially adding 50, 100, and 150 amu/e to 

green, orange, and red curves, respectively, to ease comparison.  
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The ILMS-Sum experiment produced a set of summed time-of-flight mass spectra for 

magnetic-field-free IL electrospray operating at flowrates of 0.63 and 0.945 nl/s, Figure 

6.4. 

Figure 6.4. Neat IL summed mass spectra of the CES with zero applied magnetic field 
applied to the source. The spectra in the low-mass plot (0-5000 amu/e) and the inserted plot 

(red outline) have been incrementally shifted by artificially adding 100 amu/e to the blue 
curve to ease comparison. 

The summed mass spectra of Figure 6.4. revealed that at least eleven ion species and 

several droplet distributions exist in the beam. Cation species that denoted in the Figure 

6.4. were n = 0, 1, 2, 3, 4, 5, and 6; the droplet distributions were centered at 40,100 amu/e 

and 163,000 amu/e for 0.63 nl/s, and 36,700 amu/e and 160,000 amu/e for 0.945 nl/s. (A 

lower m/q distribution between 5,000-8,000 amu/e existed and was classified literature as 

a distribution of multiple ion species larger than n = 8 that emitted at lower intensities and 

often with multiple charges.)[43, 58] Furthermore, the flowrate increase appeared to reduce 
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the intensity of the ion peaks, which aligns with results of summed mass spectra presented 

by Miller et al.[58] The locations of the droplet distributions and the existence of 11 or 12 

cation species defined the control used during analyses of the summed mass spectra of 

ILFF electrosprays. With respect to typical operation of electrosprays, the CES running 

neat IL appeared to operate in a mixed ion/droplet mode (eleven ion species and several 

droplet distributions). The mode of operation will be examined for each of the ILFF 

propellant to assess whether the addition of NPs influenced this characteristics of the CES. 

6.4.3. Composition of An Ionic Liquid Ferrofluid Capillary 
Electrospray Beam 

The collection of mass spectra from the CES using the ILFF propellants was the main 

goal of this chapter, and the results were expected to illustrate the influence from NPs and 

the applied magnetic field on the mass composition of neat IL electrospray beam. 

Furthermore, a primary expectation the mass spectrum collected of ILFF propellants would 

be the measurement of the NPs emitted during operation. First, the discussion review what 

the collected mass spectra of the ILFF propellants said about the operation of the CES 

running on the propellants. 

The summed TOF mass spectra were collected for each propellant at the flowrates 

reported in Table 6.1. The range of energy defects used for individual spectra in the 

summed TOF mass spectra was 350 eV to 50 eV. An example summed TOF mass spectra 

collected from the CES running on each propellant at a nominal flowrate of 0.5 nl/s is 

presented in Figure 6.5.  
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Figure 6.5. Mass spectra of an electrospray emitted from the capillary source using ILFF-10 
under a zero and a 200-Gauss magnetic field. The 200-Gauss spectra in the background plot 
(0-3000 amu/e) and the lower inserted plot (red outline) have been incrementally shifted by 
artificially adding 50, 100, and 150 amu/e to the blue, green and yellow traces, respectively, 

to ease comparison. 

An immediate observation from Figure 6.5. was that the ILFF electrosprays, while 

highly ionic, all operated in mixed ion/droplet modes; All emitted ILFF electrosprays had 
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at least n = 0, 1, 2 ion species and one or more droplet distributions centered at m/q ranging 

from 30,000 amu/e to 150,000 amu/e. Similar observations were made on the summed 

spectra for higher flowrates of ILFF-10, ILFF-20, and ILFF-30 propellants, Appendix J. 

The finding begged the question: what fraction of the mass (and fraction of the charge) of 

the electrospray beam was transported by each type of particle (ion or droplet)?  

The process to answer the question began by defining the specific m/q ranges of the 

beam that were of interest. These were used as the bins which would be filled with based 

on the intensity of a specific mass spectrum. For example, Figure 6.6. illustrates seven 

distinct ranges, three of which are the three lightest ion species, one is a range that includes 

the combined intensities of several heavier ion species, and the two others define portions 

of the beam transported by larger m/q distributions (i.e. droplets).  The selection of the 

lightest ion species as bins was easiest as the peaks were distinct and the ion m/q was 

already defined. Combining the remainder of heavier ion species into a Bin 4 was done due 

to the relatively low intensity of their peaks in summed mass spectra for all the 

electrosprays (i.e. the mass or current fraction transported by the heavier ion species would 

have been inconsequential compared to the lighter ions or droplets). The ranges of m/q for 

Bin 5 and 6 were not distinct ions, but instead where selected based on distributions 

observed in the spectra denoted in Figure 6.6.c) with Maxwell-Boltzmann fits; (the use of 

this distribution will be discussed later).  Bin 7 was defined as the m/q range that was 

greater than the tail end of the droplet distribution of Bin 6 to capture the tail end of the 

summed mass spectrum.   
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Figure 6.6. The summed mass spectrum of neat IL electrospray broken into 7 ranges of m/q 
that would be used as bins for the mass and current fractions of an electrospray beam. a) 

light ion species which comprise Bins 1-3; b) heavier ion species which combine to form Bin 
4, c) Droplet distributions which were split into three bins based on the center m/q of each 

distribution. 

With the bins of low and high m/q ranges selected, the actual masses of the particles 

were needed to determine the fraction of the mass flow in the electrospray beam that was 

associated with each.  This was accomplished by first assuming the distributions were 

comprised of polydisperse droplets with charge equal to 44% of the Rayleigh limit, (2.12)

; this definition for droplet charge is well established in literature.[1, 29, 58, 132] Using 

the definition for mass of a spherical droplet, 34
3 Dm R  , and the Rayleigh limit, the 

radius of a droplet was easily solved to be function of m/q,   and  (density and surface 

tension of EMIM-NTf2, respectively), 
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The m/q axis of the summed mass spectra were converted to droplet radius via (6.1). 

Furthermore, the droplet radius was input into (2.12) to determine the particle charge of as 

function of m/q, and subsequently used to find the mass axis of the summed mass spectra, 

0.44m
Dqm q . Using the estimated droplet radius and particle mass, the fraction of the mass 

transported by the distributions was estimated by integrating the intensity curve of the 

summed mass spectra of five propellants with respect to the new mass axis. The results 

were separated based on the bins defined in Figure 6.6. forming the histogram presented in 

Figure 6.7. The bins from Figure 6.6. were defined by either the ion species (n = 0, 1, 2, 

3…) or a range of droplet radii that form the distributions. 

Figure 6.7. Mass fractions of all electrosprays running at a nominal 0.5 nl/s. The left axis is 
on a log scale to better illustrate the magnitude of the mass fraction for the ion species. 



www.manaraa.com

171 

Figure 6.7. illustrates that the mass of the electrospray beam emitted from the CES is 

transported almost entirely by the droplet distributions. This is a known characteristic of 

capillary electrosprays stemming from the size of the orifice in the capillary and the 

flowrate required to maintain stable emission. Whether this is undesirable is dependent on 

the application, (i.e. are droplets or ions wanted). Several groups have had some success in 

using flow inhibitors to reduce the flowrate and increase the ion production of IL 

electrosprays.[10, 133] In the study of this dissertation, using the NPs did not appear to be 

a factor in the mass fraction of the electrospray beam. This is despite the assumed inclusion 

of NPs within an emitted ILFF electrospray, which were known to be five times the density 

of neat IL. This raised another question about the summed mass spectra: was a NP 

distribution detected and can it be distinguished from other artifacts in the electrospray 

beam? 

6.4.4. Potential for Nanoparticle Distribution in Summed Mass Spectra 

The discussion of Section 6.2. is revisited to determine whether a NP distribution was 

detected by the summed TOF mass spectra collected in this study. The NP m/q was 

estimated to be ~600,000 amu/e, but the mass and charge of a NP was expected to vary. 

This meant that the range of m/q in which a NP could produce a signal in a TOF mass 

spectrum began at the estimated m/q of the smallest NP at 44% Rayleigh limit and extended 

to a range beyond that measured using the AFRL-TOF instrument which maxed out at 

~800,000 amu/e.  Though this still implied that a NP could have been detected by the 

instrument. But the intensity of the NP signal in the mass spectrum may be an 

insurmountable hurdle in its detection. The volume fraction of NPs in the ILFF-40 
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propellant was only 3.65 %v/v, or 6.5 %v/v if copolymer was considered. This meant that 

if the electrospray is assumed to emit only droplets[1] of radius 17.5 nm (center radii of 

the bin with highest mass fraction in Figure 6.7.), a 30-nm-diameter IL-coated NP will 

appear only once for every 77 emitted IL droplets, Figure 6.8.  

Figure 6.8. Graphic of an ILFF electrospray emission of NP and IL droplets. 

As the MCP detector for the TOF-MS is an event-based device (i.e. 1 count on the 

intensity axis of a mass spectrum was equal to one impact event of the MCP which is 

independent of particle mass or charge) the intensity of a NP distribution relative to an 

assumed 17.5-nm IL droplet distribution nearly two orders of magnitude less. If the NP 

distribution was monodispersed and equally charged (1 amu/e distribution width at the 

estimated m/q of ~600,000 amu/e) its intensity peak would have a magnitude in the 1000s, 

well above the droplet distributions, and should be easily distinguished from other 

populations in a summed TOF mass spectra, Figure 6.9.a). However, the assumption that 

the emitted NPs had zero variation in mass or charge is unwarranted given the known 

variation in hydrodynamic diameter of the NPs (±5 nm). If the m/q of NPs within the 

population varied in diameter by ±1 nm (±4,000 amu/e) the resultant distribution would 

have an average intensity on the order of 10, Figure 6.9.b).   
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Figure 6.9. a) Summed TOF mass spectrum of CES running on ILFF at Q = 0.54 nl/s 
overlaid with the estimated NP peak (red) assuming its m/q was 585,400 amu/e with width of 
1 amu/e. b) Summed TOF mass spectrum of CES running on ILFF at Q = 0.54 nl/s overlaid 

with an estimated NP distribution (red) given a center m/q of 585,400 and a width of 
8,000 amu/e (±1 nm variation in NP diameter).  

These observations were disconcerting as it meant that, if a NP distribution existed and 

had even a 1% variation in its m/q, it would be indistinguishable from the other 

artifacts/distributions in the summed TOF mass spectra. However, the estimation of an NP 

distribution does provide insight for future investigation; specifically, an initial estimation 

that can be used to develop a new TOF spectrometry technique to distinguish distributions 

with relatively small signals, or to determine if a different instrument exists that can 

separate/measure emitted NPs in an electrospray beam from similar sized droplet 

populations. 

6.4.5. Magnetic Effect on Mass Spectra 

The last goal of the mass spectrometry study was to measure how the magnetic field 

influenced the mass spectra collected from ILFF electrosprays emitted from the CES. As 

the electrospray from the CES operating on the ILFF propellants was shown to run in a 
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mix ion/droplet regime, one question would be, does the magnetic field change the primary 

mass transport species, i.e. are 10 to 25-nm-radius droplets still the primary mass carrier of 

the electrospray beam?   

The only measured influenced the magnetic field had on the ion species was observed 

in the ILFF-30 and ILFF-40 summed mass spectra. An example of the influence is shown 

in the compiled summed mass spectra collected from both magnetic-field-free and 

magnetically-stressed ILFF-30 electrosprays at flowrates of 0.54 nl/s, 0.72 nl/s, 0.90 nl/s 

of Figure 6.10.  

Figure 6.10. Mass spectra of an electrospray emitted from the CES using ILFF-30 under a 
zero and a 200-Gauss magnetic field for two flowrates. To ease comparison, the 0-Gauss 
spectra in both the main and inset plots have been shifted on the m/q-axis by artificially 

adding 100 and 200 amu/e to light-green and light-red traces, respectively, with an addition 
20 amu/e adding to their 200-Gauss counterparts. 

Following the procedure outlined in the previous section, the mass fractions were 

calculated from spectra collected when using ILFF-30 and ILFF-40 propellants, and with 

and without the 200-Gauss magnetic field, and are presented as histograms in Figure 6.11. 
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(The Mn/MTotal axis is log10 in a) and linear in b) but both include the same data). The mass 

fractions revealed several interesting observations: (1) the mass fraction of the ion species 

in magnetically-stressed electrosprays was still several orders of magnitude less than that 

of the droplet populations. (2) The particles estimated with radii between 10 and 25 nm 

still carried the largest fraction of mass, regardless of the magnetic stress state of the 

electrospray. (3) The combined mass fraction of the ion species and the combined mass 

fraction of the particles with estimated radii greater than 10 nm in a given electrospray 

increased after magnetic field application.  

The last observation meant that the magnetic field had increased the mass flow of the 

largest m/q particles and lightest ion species; concurrently, the field also increased the 

intensity peaks of the lightest three ion species, Figure 6.10. The combined effect was 

disconcerting because the measured emission current of the source was reduced when the 

magnetic field was applied (Section 4.3.3.d.), however an increase in mass flow and 

intensity of the lightest ions species would suggest higher current in the electrospray beam. 

The mass spectra, and mass fractions thereof, were only collected in a small solid-angle of 

the center electrospray beam. In literature, the current density and mass flowrate change 

significantly at higher beam half-angles.[43] Therefore, any changes observed in the 

spectra due to the magnetic field may not appear to follow other magnetically-induced 

changes observed in electrospray operation.  

The results suggest that while the magnetic field does have some influence on the 

composition of the electrospray, they are negligible when focusing on the general emission 

of the electrospray (ion/droplet mode, m/q range with highest mass fraction). 
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Figure 6.11. Mass fractions of all electrosprays running at a nominal 0.5 nl/s. The left axis is 
on a log scale to better illustrate the magnitude of the mass fraction for the ion species. 



www.manaraa.com

177 

6.4.6. Other Observations on Ionic Liquid Ferrofluid Capillary 
Electrospray Mass Spectra 

Apart from the conclusions on the composition of the electrospray, the influence, or 

lack thereof, on the composition due to the magnetic field, and the absence of NP artifacts 

in the summed mass spectra, there were several observations on the masses within the 

summed TOF mass spectra that warrant some discussion.  

6.4.6.a. Appearance of Low Mass-to-Charge Products (Ions) 

The number of sequential cation species that existed in the summed mass spectra, N+, 

was fewer for propellants with higher weight-percent nanoparticles, Table 6.2. The largest 

measured ion species in each spectrum was N+ minus 1, i.e. for neat IL operating at a 

nominal 0.5 nl/s, N+ = 13 which meant the largest ion species was n = 12.  

Table 6.2. Tabulation of the number of cation species present in summed time-of-flight mass 
spectra for five propellants. 

Neat IL ILFF-10 ILFF-20 ILFF-30 ILFF-40 
Number of Cation Species (N+) 

N
om

in
al

 
Fl

ow
ra

te
 

(n
l/s

) 0.5 13 8 5 5 3 
0.75 7 6 5 

1 12 7 5 3 

The extinction of ion species between neat IL and ILFF-40 electrosprays suggests that 

the NPs enacted a change in the electrospray emission process, which could have reduced 

the ability for the CES to produce heavier ion species. In literature, species present in IL 

electrosprays appear to be a function of flowrate, extraction field, and/or thermal energy of 

the emitted species.[58, 134] The dependence on flowrate could be a factor in the observed 

ion species; the minimum operable flowrates for ILFFs was tied to their wt% of NPs. For 
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ILFF-30 the minimum flowrate was much nearly double that of neat IL. In the examination 

of summed mass spectra collected at minimum flowrates of neat IL and ILFF-30 of 

Appendix G., the five lightest cation species were observed in spectra for both propellants. 

In an molecular dynamics study that energy of the ion species was shown to be directly 

related to the survival time for heavier ions species (i.e. time prior to dissociation into 

lighter ions species);[135] this would mean that heavier ions may not have been included 

summed TOF mass spectra in this study, where the cutoff of minimum ion energy was 

550eV (Appendix I). Results from the beam energy study on ILFF-30 and ILFF-40 

(Section 5.3.5.) showed that a fraction of the electrospray had an energy less than 50 

percent of the extraction potential, which complements this theory. However, an angular-

resolved mass spectrum of ILFF electrosprays, which included summed spectra for the 

entire range of energy defects (0 eV to 900 eV) would be necessary to completely 

determine the driving factor(s) for the absence of ion species in ILFF electrosprays that 

exist in neat IL electrosprays. 

6.4.6.b. Magnetic Influence on Ion Peak Intensity 

Another observation came when comparing the summed mass spectra of 

magnetic-field-free to magnetically-stressed electrosprays, specifically those using 

ILFF-30 and ILFF-40 propellants. The application of a magnetic stress enacted a change 

in the magnitude of the intensity peaks for three lightest ions species, Figure 6.12. In the 

figure, the intensity axis is a log10 scale for clarity. The plots show that only electrosprays 

operating with higher flowrates of ILFF-30 were influenced by the magnetic stress, which 

increased in the peak intensities of all three of the n = 1 and n = 2 ion species. Similarly, 
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the magnetic stress also increased the n = 1 ion peak intensity of the ILFF-40 summed TOF 

mass spectrum, Figure 6.12.d). While the observation was interesting as it showed further 

influence of the magnetic field on an operating ILFF electrospray, the effect was only 

significant for a few combinations of propellant/operating conditions, and therefore was 

not considered an overall trend of the magnetic influence on an ILFF electrospray.  

Figure 6.12. Peak intensity of cation species a) n = 0, b) n = 1, c) n = 2. d) the current fraction 
of the summed TOF mass spectra for the four ILFF propellants. 

6.4.6.c. Distributions in High Mass-to-Charge Range (Droplets) 

There were a couple observations made during the analysis of the high m/q range of 

the summed TOF mass spectra that warrant discussion. One was during the examination of 
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the energy dependence of distributions in the large m/q range. An inspection of individual 

spectra collected at different energy defects used to create summed TOF mass spectrum 

was done graphically, Figure 6.13. The large m/q range of summed mass spectra from neat 

IL and ILFF-10 electrosprays are shown in Figure 6.13.a).  

Figure 6.13. a) Summed TOF mass spectra from CES running on neat IL and ILFF-20 at 
Q = 0.63 nl/s and 0.52 nl/s, respectively. b) Individual spectra at different energy defects 

which sum to the neat IL summed TOF mass spectra in a. c) Individual spectra which sum 
to the ILFF-10 summed TOF mass spectra in a. The intensity-axis was incrementally shifted 

by arbitrary amounts to provide better clarity between spectra. 

Two distributions appeared in both curves and, while the intensity of the distributions 

was significant greater in the neat IL spectra than ILFF-10, both were at approximately the 

same locations (most probable m/q at ~40,000 amu/e and ~150,000 amu/e). This suggested 
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that the individual spectra at each energy defect would appear similar, albeit at different 

intensities. However, this was not the case as Figure 6.13.b) and c) illustrates. In the two 

plots, which present the individual spectra that comprised the summed TOF mass spectra 

of Figure 6.13.a), the data that formed the two distributions of the summed TOF mass 

spectra differed substantially. Specifically, the neat IL summed mass spectrum was 

comprised of a spectrum that had only a single distribution at an energy defect of 300 eV 

and 400-eV centered at 45,000 amu/e, but split into two distributions the lower energy 

defect spectra, which were centered at 20,000 amu/e and 240,000 amu/e in the 50-eV 

spectrum (a drop of 60-percent and an increase of 380-percent, respectively). This analysis 

aligned with observations by Miller et al. when spraying EMIM-NTf2 and BMIM-DCA 

propellants at flowrates between 0.09 and 2.35 nl/s.[58] They concluded that the observed 

shift of the distributions was a consequences of a single droplet species (same size and 

mass) having a range of charge that fall within 0 to 100% of the Rayleigh limit, (2.13), and 

that the droplet charge correlated to the droplet’s birth location. Therefore, the shift in the 

m/q was a function of the energy defect of the droplet.  

However, the spectra that comprised the ILFF-10 summed mass spectrum differed from 

the neat IL. All the individual spectra contained two distributions which were less 

dependent on the energy defect at which the spectrum was collected; e.g. between the 

spectrum collected for an energy defect of 300 eV and the spectrum for 50 eV the center 

m/q of the lighter distribution dropped 20-percent, while the center m/q of the heavier 

distribution increased in by 20-percent. The noticeable difference in the individual spectra 

of an ILFF-10 electrospray to those of a neat IL electrospray was unexpected given the 

relatively small amount of NPs (1.6 %v/v) in the propellant. The insensitivity of the 
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individual spectra to the energy defect of the electrospray also suggested that the estimated 

droplets populations were born at relatively the same emission location. Therefore, the NPs 

must influence the with the emission process of the IL droplet distributions, though the 

mechanism was not determined in this research. 

A final observation on the high m/q range came when during the attempt to reconcile 

the individual distributions that existed in the summed TOF mass spectra. This was 

completed by creating a set of M-B distributions that fit the curve of the summed mass 

spectra for the m/q range of 10,000 to 750,000 amu/e; a similar process was conducted by 

Miller et al  on summed mass spectra of EMIM-NTf2 and EMIM-DCA.[58] The summed 

mass spectrum from the CES running on neat IL at 0.705 nl/s will be used as an example, 

with the final result in Figure 6.14. (also shown previously in Figure 6.6.) 

The fits were composed of arbitrarily scaled M-B distributions. This type of distribution 

was used due to the assumed statistical nature of the m/q of the emitted particles. Two 

distributions were chosen initially based on the two distributions observed in Figure 6.13.; 

additional distributions were added if necessary to fit the data while remaining physically 

possible (i.e. distributions below m/q of 10,000 amu/e were considered to be part of a 

plateau comprised of multiply charge ions or ions with varying energy).[58] In the case of 

the neat IL spectrum in Figure 6.14. a third distribution was necessary to fit the data. The 

M-B distributions were centered at m/q of 32,000, 59,000, and 172,000 amu/e. 
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Figure 6.14. Maxwell-Boltzmann fits to the large m/q range of the CES running on neat IL 
at 0.63 nl/s. The M-B fits represent potential droplet distributions within the electrospray 

beam. The sum of all the M-B fits was determined as well (orange curve). 

The interesting finding from the process of fitting M-B distributions to the neat IL 

summed TOF mass spectra was that only three distributions were needed to form a summed 

curve which fit the spectra from 20,000 to 700,000 amu/e (orange curve of Figure 6.14.). 

The analysis was repeated for spectra collected from electrosprays of ILFF-10, ILFF-20, 

ILFF-30, and ILFF-40 propellants all at a nominal flowrate of 0.5 nl/s to show that a similar 

set of M-B distributions also summed to a curve that expressed the data well; the graphical 

results are presented in Figure 6.15. Interestingly, the spectra from ILFF-40 electrospray 

required a fourth distribution to properly fit the data, which could either be another droplet 

population or the hypothetical NP distribution. However, as this fourth distribution was 

buried in the noise of the spectra, illustrated in Figure 6.15.d), there was no conclusive 

evidence that this distribution was real.   
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Figure 6.15. Maxwell-Boltzmann fits to the large m/q range of the CES running on a) 
ILFF-10 at Q = 0.52 nl/s, b) ILFF-20 at Q = 0.47 nl/s, c) ILFF-30 at Q = 0.54 nl/s and d) 
ILFF-40 at Q = 0.54. The M-B fits represent potential droplet distributions within the 

electrospray beam. The light-purple, light-blue, light-green and light-yellow curves of a, b, c, 
and d, respectively are the smoothed data. 

The droplets distributions centered at approximately 32,000 and 172,000 amu/e that 

appear in summed mass spectra from all propellants were similar to those observed by 

Miller et al.[58] If the center m/q of each distribution was assigned a charge of 0.44 times 

its Rayleigh limit, 0.44
Dq , the radius, DR , can be found via (6.2). Here   and  are the 

density and surface tension of EMIM-NTf2, respectively. 
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The DR  for each of three droplet distributions fit to the neat IL summed mass spectra 

were determined as 4.8, 7.1, and 14.4 nm, which match well with Miller et al. findings 

using the same IL propellant. Furthermore, the jet diameter estimated via the definition 

1 3
00.2( )jR Q K defined by the same group, was 8.4nm; or 1.71 times the largest DR

determined from the M-B fits, which also aligns with the DR = 1.69 jR  from literature. (In 

the determination of jet radius, Q, ε, and K were 0.63 nl/s, 12, and 0.91 S/m respectively). 

The same approach was taken for each of the M-B fits to the ILFF spectra of Figure 6.15. 

and the results, combined with the estimated DR  of the neat IL, are in Table 6.3. The results 

show that despite the addition of NPs, the ILFF electrosprays still appear to have similar 

droplet distributions as an electrospray using their carrier propellant. 

Table 6.3. Droplet radii of neat IL and ILFF electrosprays running at a nominal Q = 0.5 nl/s 

Propellant 
Droplet Distribution DR  (nm) 

1 2 3 4 
Neat IL 4.8 7.1 14.4 
ILFF-10 5.0 7.1 13.4 
ILFF-20 4.7 7.5 14.0 
ILFF-30 4.8 8.1 14.4 
ILFF-40 4.3 7.4 13.1 21.7 

The above analysis showed a potential method to fit the m/q distributions of droplets 

in neat IL and ILFF electrosprays, and one to determine an estimated droplet size for the 

most probable m/q of the distributions; however, the physical reason for distribution width 

was not determined. Also, because the TOF-MS only differentiates based on m/q, this 
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width could have come from either varying size, varying charge, or a combination of the 

two, and cannot be separated. To postulate that a droplet in the distribution maintained a 

charge above 50 percent of the Rayleigh limit is unwarranted, as noted in literature; also 

noted in literature was the large range of size for satellite droplets (i.e. those not formed 

directly from jet breakup).  Both support the conclusion (that this study also maintains) that 

the distribution width of electrosprays comes from varying charge and size of polydisperse 

droplets.  

6.5. Conclusions: Mass Spectrometry of Ionic Liquid 
Ferrofluid Capillary Electrospray 

The goals of this chapter were to measure the emitted species (ions and droplets) within 

the mass spectra of four ILFF propellants and compare it to the emitted species of the 

control neat IL electrospray, to observe and measure the magnetic NPs within the 

electrospray beam using TOF mass spectrometry, and to measure the influence of a 

magnetic field on the emitted species within the mass spectra of the ILFF propellants. 

The CES running on all the propellants (neat IL and four ILFF) was shown to operate 

in a mixed ion/droplet mode. The mass fraction of each of the electrospray was heavily 

concentrated in droplets with estimated droplet radii between 10-25 nm. As such the NPs 

were concluded not to be a factor in the measured mass flowrate in the summed TOF mass 

spectra. 

In fact, detection of the NP proved to be less intuitive than simply extending the 

collection range of the TOF mass spectrometer. The size of the NP emitted from the 

electrospray was hypothesized to be approximately 30 nm in radius, assuming a 15-nm 
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layer of IL coated the surface of the NP and provided the charge. The estimated center m/q 

of the NP distribution (most probable m/q) was determined through Rayleigh limit criterion 

as 585,000 amu/e; however, no distributions were observed in any of the ILFF propellants 

that fit this assumption. This may be attributed to the potentially low intensity of the 

distribution as NP was likely emitted only once for every ~100 droplets (based on % v/v 

of NPs in the propellant). Therefore, if future investigations wish to achieve this 

measurement they will need to determine a better approach to collect the low signal of the 

potential NP distribution and distinguish it from background noise.  

Lastly, the magnetic field was less influential on the summed mass spectra of the ILFF 

electrosprays, and was only significant on the spectra collected from ILFF-30 and ILFF-40 

electrosprays. Specifically, the spectra collected from the magnetically-stressed 

electrosprays had changed the relative intensity of the ion species. There didn’t appear to 

be a trend correlated the change to flowrate or NPs, though all electrosprays (except the 

ILFF-30 electrospray operating at its lowest tested flowrate) increased the relative intensity 

of heavier ion species. Lastly, the large m/q distribution were negligibly influenced by the 

magnetic field. Overall the combined analyses of the summed mass spectra of 

magnetically-stressed electrosprays suggest that the magnetic field could potentially 

increase the average m/q of the center of the electrospray beam, however, this was only 

achievable for certain propellants and (Q, Vext) settings. As such, if a higher average m/q 

in an electrospray was desired, a more reasonable approach would be increase the NPs in 

the propellant or increase flowrate of the of the propellant to the source.  
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Chapter 7 

Electrospray from a Single Peak Rosensweig 

Instability 

The development and testing of the Rosensweig peak electrospray source (RP-ES) was 

conducted to understand how removal of the backbone structure of traditional electrospray 

device affects the emission characteristics of an electrospray from a single emitter. The 

following chapter details the motivation and goal of the experiments using the RP-ES 

followed by a discussion of the results and comparison to two other electrospray sources: 

the CES and a solid-needle electrospray source (SN-ES).   

7.1. Motivation and Goal 

The driving motivation of the research of this dissertation revolved around the new 

ILFF propellant and its ability be both the backbone structure that resembled emitters used 

for electrospray ionization and the electrospraying fluid simply through the concurrent 

application of magnetic and electric fields. In the proceeding chapters, the unique 

properties of the ILFF propellant (NPs and magnetic susceptibility) were individually 

examined by electrospraying the propellant from a magnetically-stressed capillary source. 

However, the prospect of using the ILFF as both structure and propellant would answer a 

new set of research questions revolved around the concept of combined electric and 

magnetic field electrospraying. Specifically, the motivation of this research revolved 
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around the three questions: (1) How does an electrospray from an electrically stressed, 

magnetically-induced ILFF peak operate (i.e. emission current and extraction potential), 

and how does this differ from electrospray emitted from other types of sources (e.g. 

electrically stressed and induced pressure-driven capillary emitter and/or neat IL needle 

emitter)? (2) Does the composition of particles emitted from the magnetically-induced 

ILFF peak differ from those emitted from other types of sources? (3) Does variation in the 

magnetic field used to create an ILFF peak change the operational parameters or 

composition of the particles emitted from the, magnetically-induced ILFF peak?  

This chapter attempts to answers these three questions through the completion of two 

experiments on the RP-ES, and one on a neat IL SN-ES. The SN-ES was built and tested 

in this study to provide a second electrospray source to which the RP-ES was compared. 

The SN-ES differs from the CES in several areas, but the primary focus of the study was 

to compare the emission products of the two sources to those from the RP-ES. In this 

regard, needle sources are known to emit lighter m/q products including only the lightest 

two or three ion species and usually no droplets; this contrasts with capillary sources which 

emit up to a dozen ion species and several droplet populations, as Chapter 6 established. 

The goal of the experiments was three-fold, 1) to determine the operating emission 

current and extraction potential of the RP-ES while varying the magnetic field strength 

used induce the Rosensweig peak. 2) to determine the mass-to-charge composition of the 

emission products in the center of the electrospray beam emitted from the RP-ES and 

SN-ES, 3) compare RP-ES operating parameters and mass spectra to the operating 
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parameters and spectra from the CES and SN-ES to define the differences between the 

Rosensweig source and two prevailing electrospray sources.  

7.2. Apparatus and Procedure 

The apparatus and experimental procedures for the research based on the RP-ES are 

described below.  Two sources were used for these experiments which are detailed first. 

The diagnostic and facilities and the experimental procedures used to characterize the 

RP-ES and measure the mass composition of both the RP-ES and the SN-ES follow.  

7.2.1. Rosensweig Peak Electrospray Source 

The RP-ES apparatus used to produce and measure electrospray from a single 

Rosensweig instability peak is shown in Figure 7.1. The apparatus is comprised of five 

main components; the extractor plate, the collector plate, the isolation block, the ILFF 

reservoir, and the neodymium magnets. The extractor plate is stainless-steel and has a 1-

mm aperture. It was offset from the reservoir surface by 3 mm. The collector plate (not 

shown) was only used in the emission experiments in the UHV facility, and is a stainless-

steel plate offset 10 mm from the extractor plate. The isolation block was machined from 

PTFE and provided isolation between the reservoir, which is biased during testing, and the 

magnets and the testing chamber. 
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Figure 7.1. Rosensweig electrospray apparatus for TOF facility experiments with 
components denoted. 

The reservoir is an important component of the RP-ES as required a geometry that 

would both hold the ILFF and limit the Rosensweig instability to one peak. To form a 

single peak of the ILFF in the reservoir must be less than critical wavelength of the 

Rosensweig instability. The critical wavelength, ,c FF , was defined as the wavelength

beyond which one peak splits into two peaks. Here, ,c FF was that determined by Rupp

through his analysis of a scenario where the non-uniform magnetic field acting on a flat 

ferrofluid becomes the dominant body force (over gravity),[136] and was defined as (7.1). 

Meyer empirically confirmed this hypothesized capillary wavelength using EFH1 

Ferrofluids.  

 , 2 2c FF d
dzM B M B

    


(7.1) 

The term in the denominator of the right-side of (7.1) was estimated through the 

measurement of magnetic field strength at two points, one directly at, and a second 

1.54-mm above the surface of a magnetic fluid. M was found using the magnetization 
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curves for NJ397074 performed by the University of Sydney (Appendix L.). For the 

magnetic fields used in these experiments (333.9 Gauss to 690.4 Gauss), ,c FF was 2.53

mm to 3.37 mm.  As the reservoir needed to remain less than 2.53 mm, the diameter of the 

reservoir, resd , was approximately ,0.8 c FF , Figure 7.2.

The final design was a 2-mm-diameter, 4-mm-deep hole was machined into a stainless-

steel cylinder to create the reservoir. The reservoir hole is also chamfered at the top face to 

reduce boundary effects on the Rosensweig peak. The RP-ES was subjected to varying 

magnetic field strengths to observe any resulting effects. One, two, and three 25.4-mm-

diameter, N52-grade, neodymium permanent magnets were placed behind the ILFF 

reservoir to produce varying magnetic fields strengths at the reservoir surface (measured 

with no fluid in the reservoir) of 333.9, 520.5, and 690.4 Gauss, respectively. 

Figure 7.2. ILFF reservoir design for the RP-ES. a) Illustration on how the diameter of the 
reservoir was defined by the critical wavelength of the Rosensweig instability. b) Single 

Rosensweig peak formed in reservoir using 520.5-Gauss magnetic field. 

7.2.2. Solid Needle Emitter Electrospray Source Apparatus 

The SN-ES was built by the team at the AFRL and is shown in Figure 7.3. The source 

is comprised of a chemically etched tungsten needle with a tip radius of approximately 5 
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µm. A cross bar is welded onto the shaft of the needle to provide support for the liquid 

droplet. The needle is inserted into a notched copper cylinder and secured using a copper 

piece and screws. The source is fit into a rotatable stage that has a fixed extractor plate 

approximately 0.5 mm downstream from the needle apex. The rotatable stage allowed for 

collection of the electrospray beam from off-axis angles to acquire spatially resolved 

measurements of the beam. 

Figure 7.3. SN-ES apparatus with components denoted. 

7.2.3. Experiments 

The study present in this chapter had three experiments. One experiment was done to 

characterize the RP-ES emission current, extraction voltage and average mass-to-charge of 

the emitted beam. This was followed by another experiment that used the AFRL TOF-MS 

to collect mass spectra from the RP-ES. The final experiment also used the TOF-MS and 

was done to collect mass spectra from neat IL needle electrospray source. The procedures 

for each are presented below. 
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7.2.4. Procedure for Rosensweig Peak Electrospray Source 
Characterization  

An experiment to measure the electrospray characteristics of emission current and mass 

flowrate of the RP-ES was conducted in the UHV facility at Michigan Tech, ERP-1, while 

an experiment to measure the mass-flowrate and current density was conducted in the 

TOF-MS at AFRL, ERP-2. The following outlines the procedures used to complete the 

experiments. The preparation procedure included cleaning all components via sonication 

in ethanol. After cleaning, the ILFF reservoir was secured in the PTFE block and one, two, 

or three permanent magnets were inserted into the block to produce the desired magnetic 

field strength. Next the ILFF was dispensed into the reservoir via a syringe pump. The 

volume of ILFF used in each test was held at a constant 20 µL. The extractor plate was 

placed at approximately 1.5 mm from the apex the Rosensweig instability peak prior to 

emission and the aperture was centered on the peak axis.  

Once the source was assembled, it was either placed into the UHV facility as shown in 

Figure 7.4. (ERP-1), or it was attached to a lens stack and then placed into the TOF-MS 

source chamber (ERP-2). In ERP-1, the extractor plate was biased using a 0.5 Hz square 

wave overlaid on a two-minute ramp from ground to the maximum peak voltage and back 

to ground. The current on the collector plate was recorded during the entire ramp. In ERP-2, 

a 0.5-Hz square wave with constant amplitude of ±800 V was applied to the reservoir, and 

a second 0.5-Hz square wave with varying peak-to-peak amplitude was applied to the 

extractor plate. The two square waves were 180 degrees out of phase. The QCM was placed 

downstream of the source to acquire start-up mass measurements, after which the Faraday 

cup was moved into the downstream position to collect current.  
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Figure 7.4. a) Setup for the RP-ES characterization experiment in the UHV Facility. b) 
Setup for the RP-ES and SN-ES experiments in the AFRL TOF-MS Facility 

7.2.5. Procedure to collect TOF Mass Spectra from the Rosensweig Peak 
Electrospray Source 

TOF spectra were collected for an electrospray from RP-ES using the following 

procedure. The preparation procedure was identical to ERP-1 and ERP-2 experiments 

described in 7.2.4 A 0.5-Hz square wave with constant amplitude of ±800 V was applied 

to the reservoir; a second 0.5-Hz square wave with varying peak-to-peak amplitude was 

applied to the extractor plate. The two square waves were 180 degrees out of phase. Typical 

starting voltages (difference between needle and extractor potentials) ranged from |2400 V| 

to |3000 V|, depending on the magnetic field strength applied to the ILFF. The reservoir 

bias with respect to ground provided the maximum mean kinetic energy of the cations and 

anions of +800 eV/q and -800 eV/q, respectively, although the kinetic energy has observed 

to be significantly.[43]  

The orthogonal extraction used to send the emission products of the electrospray beam 

into the TOF flight tube was described in 3.6. For this experiment pulse width and 

magnitude were 2.5 µs and 240 V, respectively. After travelling through the flight tube, 
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cations were detected by an MCP with a first stage voltage of -2000 V (for anion detection 

a +3900 V was split between the stages of the MCP; see Section 7.3.2. for a detailed 

description). The MCP signal was directed into two amplification stages of a 300 MHz 

Stanford Research pre-amplifier and then read by a multichannel scaler or a TOF card to 

produce TOF spectra. 

7.2.6. Procedure to collect TOF Mass Spectra from the Solid Needle 
Electrospray Source  

The following steps were taken for the electrospray experiments using the SN-ES. First, 

the needle of the source was cleaned and inserted into the copper needle holder. Pure IL 

was applied using a syringe such that the needle was wetted to the apex and a drop was 

held in the crossbar-needle junction (see Figure 7.3.). The needle and copper holder were 

then placed in the rotatable stage, which was affixed to the lens stack, and positioned such 

that the apex of the needle was centered with the aperture of the extractor plate. The 

assembly was then placed into the TOF source chamber and the Faraday cup positioned 

downstream of the source. The needle source was run at the same operating parameters as 

the RP-ES. Typical starting voltages for the needle source were |1700 V|. Once a stable 

emission current of 1-2 nA was observed on the Faraday cup, a spectrum was collected via 

the procedure described in 7.2.5. 
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7.3. Results from Experiment 

Results of the experiment include the both emission characteristics, cation and anion 

mass spectra, and QCM measurements for three different magnetic field strengths from the 

RP-ES, and cation and anion mass spectra from the SN-ES.  

7.3.1. Characteristics of a Rosensweig Instability Peak Source 

The RP-ES was observed to have four modes of electrospray emission; one that was 

transient (designated ‘transient-emission’ in later sections), which began at the start of each 

emission test (start refers to either the first run with new ILFF in reservoir or a change 

between DC and AC operation) and would last for approximately five minutes, and two at 

which an electrospray could be emitted continuously, (designated ‘continuous-emission’ 

in later sections). The transient-emission mode would operate with an emission current 

range of 20-30 µA until it transitioned to either of the two continuous-emission modes. The 

two continuous-emission modes are termed the low-current mode and high-current mode, 

based on their respective operating emission currents of 1-10 µA and 30-80 µA. To move 

between the two continuous-emission modes, 50-100 V was either applied or removed 

from the extraction voltage. A fourth, unstable, mode also existed if the RP-ES was 

operated at emission current greater than 100 µA, thus it was termed the very-high-current-

mode. This mode was avoided during operation as it would lead to exceedingly long 

filamentary jets from the ILFF that bridged the gap between reservoir and extractor plate, 

shorting the emission. However, it did prove to be a mode in which high mass accumulation 

rates existed. 
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The continuous-emission modes were documented in the emission tests in the UHV 

facility. Figure 7.5 a) shows the I-V telemetry of the RP-ES during normal startup. The 

transition between the low-current and transient-current modes was seen in the collected 

current, Figure 7.5.b). 

Figure 7.5. a) Telemetry of ILFF electrospray from Rosensweig instability source under 
333.9 Gauss. The dashed lines show the transition of from low-current mode (orange lines at 
1.2 nA and -1.3 nA) to transient-current mode (pink lines at 4.7 nA and -6.5 nA) through an 

increase of |50 V| in extraction voltage. 

The arrows between the orange and pink dashed lines in Figure 7.5.b) represent the 

transition between the lower currents of low-current mode and the higher currents of 

transient-emission mode. Figure 7.6. illustrates that the transition in between low- and 

high-current modes is associated with a change in the general shape of the Rosensweig 

peak, as well as a change in the apex shape, illustrated by inset images of Figure 7.6.a) and 

b). 



www.manaraa.com

200 

Figure 7.6. Images capturing the operation of an ILFF electrospray emitted from a RP-ES in 
a) low-current mode of operation, and b) high-current mode of operation.

Images captured during high-current continuous-emission of the RP-ES under four 

magnetic field strengths provides an illustration of the effect magnetic field has on the 

emission site. Specifically, Figure 7.7. captures progression of a single Rosensweig peak 

splitting into two peaks via the addition of permanent magnets. The critical wavelength, 

,c FF , for the peak shown in Figure 7.7.d) as calculated by (7.1) was 2.36 mm while the

ILFF reservoir is 2 mm in diameter. 

Figure 7.7. Tip shape under varying magnetic field strengths. The critical wavelength for 
peak splitting is a) 3.37 mm, b) 2.84 mm, c) 2.54 mm, d) 2.36 mm. In each image, the initial 

fluid volume in the reservoir was 20 µL. 

This demonstrated that the use of  the estimated ,c FF in (7.1) was the correct approach

in designing the RP-ES. Furthermore, the visual results in Figure 7.7.d) defined the 

maximum magnetic field for experiments using the RP-ES as 802.4 Gauss.  
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The mass flow of the RP-ES was also measured using the QCM throughout the 

characterization experiment. Downstream current density was also recorded using the 

Faraday cup with a front plate and aperture which limited the current collection area to one 

equal to the QCM crystal area. The results are included in Table 7.1.  

Table 7.1. Mass accumulation rates and current measurements collected throughout testing. 

Emission Mode 
Emission 
Current 

Range (µA) 

Magnetic Field 
Strength 
(Gauss) 

Mean Mass 
Flowrate 

(ng/s) 

Mean Current 
Density  

(μA/mm2) 

Transient-Emission 20 to 30 
333.9 5.39 1.42 
520.5 6.42 2.12 
690.5 2.82 0.18 

C
on

tin
uo

us
-

Em
is

si
on

 Low-
Current 1 to 10 

333.9 0.01 0.06 
520.5 0.01 0.04 
690.5 0.06 0.10 

High-
Current 30 to 80 

333.9 0.52 0.90 
690.5 0.15 0.46 

Very-High-Current >100 690.5 5.65 1.86 

The mass accumulation rates were highest during the transient-emission current mode 

and the unstable, very-high-current mode, and averaged 5 ng/s. In the transient-emission 

mode, this mass accumulation rate continued for the entire five-minute period, after which 

time it dropped several orders of magnitude (see Table 7.1). In very-high-current mode, 

however, the mass accumulation rate was only be maintained for approximately 30 

seconds; longer emission periods in this mode induced the long filamentary jets that would 

bridge the extractor gap. A change between high- and low-current modes had only a small 

effect on the mass accumulation rate.  
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7.3.2. Rosensweig Peak Electrospray Source Cation TOF Spectrum 

Unlike the spectra collected in experiments using the CES (Chapter 6), the cation TOF 

spectrum from the RP-ES was only collected for only one pulsing plate potential, 750 V. 

Therefore, the resulting TOF mass spectra contain only those ions with a kinetic energy 

within 50 eV of the emitter bias, as slower moving ions and droplets would be unable to 

overcome the +750 V potential barrier established by VA1 and VA2, and subsequently 

would not enter the extraction region. Spectra were collected while the RP-ES operated in 

low-current and high-current modes of operation and are shown in Figure 7.8.a) and b), 

respectively. As Figure 7.8. illustrated, ion species at an m/q = 111 amu/e and an m/q = 502 

amu/e, which are the EMIM+ species n = 0 and n = 1 respectively, existed in the spectra 

collected from the RP-ES operating in both low-current and high-current modes. Please 

note that the relative intensities between the three magnetic field cases may be caused by 

fluctuations in the emission current and should not be assumed to represent the average 

spectra for that case. 
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Figure 7.8. Cation TOF mass spectra of an ILFF electrospray beam emitted from the RP-ES 
in a) low-current mode for varying magnetic field strength and b) high-current mode for 
varying magnetic field strength. The spectra in the low mass plot have been incrementally 
shifted along the m/q axis for clarity by artificially adding 50 and 100 amu/e to green and 

red traces, respectively. 
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7.3.3. Rosensweig Peak Electrospray Source Anion Mass Spectrum 

TOF mass spectra of the anion electrospray beam were also collected from the RP-ES 

under magnetic field strengths of 333.9, 520.5, and 690.4 Gauss at the reservoir surface. It 

should be noted that while both low- and high-current modes existed, collection of anions 

using an MCP is inherently more difficult. The MCP functions as an electron multiplier by 

accelerating an ion (or electron) towards an anode (or cathode) causing it to collide and 

produce an eruption of secondary electrons from the impact site. These secondary electrons 

then enter one channel of the MCP and impinge on the wall creating more secondary 

electrons. The secondary electrons impinge further down the channel wall and create a 

cascade of more secondary electrons, ultimately multiplying the signal by several orders 

of magnitude. The potential applied to the front anode during cation collection was 

approximately -1900 V. However, to accelerate the primary electron towards the channel, 

the front anode must be negative with respect to the channels and the cathode behind them. 

This means that, to collect anions, a much larger positive voltage of 3900 V must be used, 

and is split using a voltage divider to place a large positive potential on the front ‘anode’ 

yet still provide a negative potential relative to the MCP cathode to accelerate the primary 

electrons towards the channels. However, in applying a larger voltage the signal-to-noise 

ratio is reduced as other particles, including those that may be emitted at wide angles, will 

impact the detector in a random distribution. Therefore, only an electrospray with high 

signal could be measured by the MCP. Thus, the only anion spectrum collected for the 

ILFF electrospray beam was during the high-current mode of operation (Figure 7.9.). The 

TOF mass spectrum in Figure 7.9.b) shows three peaks, at m/q of 19, 280, and 315 amu/e. 
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The 19 and 280 amu/e peaks are known m/q representing the F- anion fragment and NTF2
- 

(n = 0) anion species, respectively. The 315 amu/e peak is unknown and could represent a 

fragment of the copolymer attached to an n = 0 anion. Once again note that the relative 

intensities between the three magnetic field cases may be caused by fluctuations in the 

emission current and should not be assumed to represent the average spectra for that case.  

Figure 7.9. Anion TOF mass spectra of an ILFF electrospray beam emitted from a single 
Rosensweig peak during high-current mode and varying magnetic field strengths. The 

spectra in the low mass plot have been incrementally shifted along the m/q axis for clarity by 
artificially adding 50 and 100 amu/e to green and blue traces, respectively. 

7.3.4. Solid-Needle Electrospray Mass Spectra using Neat Ionic Liquid 

TOF mass spectra of neat IL emitted from the SN-ES allow direct comparison to the 

observed TOF spectra obtained using the RP-ES under varying magnetic field strengths 

and emission conditions. Cation and anion TOF mass spectra of an EMIM-NTF2 

electrospray beam are provided in Figure 7.10. and Figure 7.11. In Figure 7.10. the inset 
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plot, which magnifies the mass axis for clarity, shows peaks corresponding to known n = 

0 and n = 1 cation species. In Figure 7.11. the inset plot, which magnifies the mass axis for 

clarity, shows peaks corresponding to known anion species at 280 amu/e for the n = 0 

species and 671 amu/e for the [EMIM][NTf2] NTf2
- (n = 1) species. Peaks at m/q less than 

100 amu/e in the cation spectrum are associated with the known EMIM+ fragments 

described in Section 7.4.2. Peaks were also recorded in the anion mass spectrum at m/q of 

19 and 350 amu/e; the peak at an m/q of 19 amu/e was associated with the F- anion 

fragment, while the peak at 350 amu/e was unknown. 

Figure 7.10. Cation TOF mass spectrum of a pure EMIM-NTF2 electrospray beam emitted 
from the SN-ES. Inset plot presents the low mass range for clarity of ion species. 
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Figure 7.11. Anion TOF mass spectrum of a pure EMIM-NTF2 electrospray beam emitted 
from the SN-ES. Inset plot presents the low mass range for clarity of ion species. 

7.4. Analysis and Discussion 

The results in Section 7.3. document the mass spectra of an ILFF electrospray beam 

from a RP-ES and SN-ES. There are several observations of the spectra and the operation 

of the ILFF electrospray that will be discussed in the following Sections 7.4.1. through 

7.4.5. 

7.4.1. Mass Flow Rate Variability 

The research group at Michigan Tech noted visual evidence of dark residue on the 

collector plate after ILFF electrospray emission from a Rosensweig instability peak, which 

is indicative of nanoparticles.[46, 137] This residue accumulation could only arise from 

very high mass flow rates that include emission of nanoparticles. Literature reports that the 
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existence of droplets in the electrospray beam was a consequence of relatively high mass 

flow rates (7.5 ng/s) and large average m/q (24,200 amu/e) values.[3] It was assumed that 

the main fraction of the mass flow in this study resulted from large charged-droplets.  In 

the case of mixed ion-droplet operational mode, the average m/q value as measured by a 

current sensor and a mass sensor will necessarily be a weighted average between the m/q 

of the small ions and the true m/q value of the large droplets. In Section 6.3., which presents 

measurement of droplets emitted from the CES operating on neat IL, the mass flowrate and 

average m/q of electrospray during TOF spectra collection at 0.63 nl/s was 1.81 ng/s and 

28,200 amu/e, respectively. These magnitudes were calculated as the sum of QCM mass 

flowrate and Faraday current of the center axis of the beam measured downstream of the 

TOF extraction region. 

For the parent ILFF, the mass of a 30-nm-diameter NP with associated copolymer and 

a 15-nm-thick layer of EMIM-NTf2 (the hydrodynamic diameter of particles in similar 

ILFFs is approximately 60 nm[12]) would be 370-million amu. Therefore, a droplet 

involving the nanoparticle and copolymer emitted from the RP-ES would be in the m/q 

range of 23,400 to 370-million amu/e (the lower limit is the Rayleigh limit of a 60-nm 

diameter IL and the upper limit is assuming the droplet is singly-charged). The average 

m/q calculated from the data presented in Table 7.1. indicates a larger fraction of the beam 

emitted from the RP-ES during very-high-current and transient-emission modes was from 

relatively large masses. However, since small ionic species were also observed in the TOF 

mass spectrum in these operational modes, the average m/q is weighted by some factor 

towards a smaller m/q value. Unfortunately, droplets could not be definitively identified in 

the TOF mass spectrum which may have been the result of collecting only spectra for one 
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energy defect and at relatively small m/q range of 24,000 amu/e. If the same range of 0-

24,000 amu/e is examined for the 50-eV energy defect spectrum of the CES operating on 

neat IL at 0.63 nl/s, Figure 7.12., no droplet population can be discerned. However, if the 

range is extended to 600,000 amu/e for the same energy defect spectrum, a droplet 

population is easily discerned at a center m/q of 240,000 amu/e. Furthermore, as Figure 

6.4. shows, the intensity and location of droplet populations in the summed mass spectrum 

is much different, revealing the potentially three droplet distributions described in Section 

6.4.3. As such, whether droplets were observed or not in the spectra from the RP-ES may 

not be due to the absence of droplets, but the extent to which the beam was measured. 

Figure 7.12. TOF mass spectrum of CES operating on neat IL at 0.63 nl/s under extraction 
conditions described in Section 6.3.2. The spectrum was collected for an energy defect of 50 

eV. Inset plots illustrate two m/q ranges of 3000-600,000 amu/e and 3000-24,000 amu/e. 

Returning to the examination of the variable mass flow and emission current of the 

RP-ES, the transient-emission and very-high-current modes of operation were calculated 

to have an average m/q, as measured by the Faraday cup and QCM, ranged from 100,000 
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to 130,000 amu/e. Over a period of approximately five minutes operating in 

transient-emission or very-high-current modes, the average m/q fell to a value near 15,000 

amu/e.  This transition to smaller masses indicates that droplet emission ceased, ion 

production greatly increased, or some lesser combination of the two.  Time-of-flight mass 

spectra taken at early operational times qualitatively reproduced those taken at low m/q 

value periods in terms of species identities and relative intensities. Qualitatively, this 

observation suggests that small ion production did not greatly increase and instead droplet 

formation decreased. Furthermore, it suggests that a future examination of the TOF mass 

spectra from the RP-ES is warranted so long as the mass range is extended to 500,000 

amu/e or more. 

7.4.2. Varying Emission Current 

A difference in the TOF mass spectrum collected from the RP-ES emitting in low- or 

high-current mode is made apparent when overlaying the two spectra, Figure 7.13. The 

correlation between changes in species within the spectra and emission current mode of 

operation was likely attributed to both variations in the electric field inducing electrospray 

from the Rosensweig instability peak, and the mass flowrate of propellant emitted from the 

peak. The apex and foundation of the Rosensweig instability were observed to have 

noticeably different geometry when emitting in the low-current mode than when in the 

high-current mode (Figure 7.6.). The change in geometry would affect the electric field 

used to extract the electrospray beam via geometric enhancement. The magnitude of the 

extraction field can be highly influential on electrospray emission. In externally wetted 

needles, the electric field defines the flowrate and, consequently, emission current of the 
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source.[18, 33, 34, 104] The electric field also influenced the ion species present in the 

beam; however, the correlation between the two variables as reported in literature is not 

proportional nor linear as some researchers reported an increase in heavier ion species,[34, 

138] while others observed or predicted the opposite.[34, 134] However, the higher mass 

flowrates associated with the high-current mode (Table 7.1) were on the same order as 

flowrates used in capillary electrospray from the CES (Section 6.4.3. and studies by Miller 

et al.,[43, 58] and Chiu et al.[3] all showed that higher flowrates correlated to the 

production of heavier ion species, i.e. n = 1, 2, 3, 4…). Therefore, a change mass flowrate 

due to higher electric fields, plus the change in peak geometry (electric field) corresponding 

to the transition between low- and high-current modes likely accounted for the increase in 

peaks at higher m/q (including the n = 1 cation species) with respect to n = 0 cation species 

at higher emission currents, (Figure 7.13.).  

Figure 7.13. Cation TOF mass spectra of an electrospray from the RP-ES during the low- 
and high-current modes of operation.  
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Also identified in the TOF mass spectrum in Figure 7.13. were peaks at masses below 

100 amu/e, which were present in both low- and high-current emission modes. The peak 

locations for these lighter masses were at m/q values of 15, 29, 42, 56, 85, and 96 amu/e. 

These lighter peaks have been examined in proceedings published by Terhune et al.,[139] 

in which they found that the widths of the peaks themselves are a consequence of how the 

specific particles in the TOF extraction region were preferentially selected based on their 

location.  

There was also evidence of unusual ionic species that were observed in the cation TOF 

spectra taken at the various magnetic field strengths beginning near 280 amu/e and 

continuing to about 390 amu/e. An intense, broad feature beginning around 410 amu/e 

continues until just after the apparent n = 1 cation peak at 502 amu/e. Figure 7.14.a) 

examines the 400-520 amu/e range and overlays and offsets the low mass species by 396 

amu/e. The strong correlation between the position and relative intensity of the fragments 

plus the 396-amu/e offset with the unidentified band in this region gives some degree of 

confidence that species in this region are ultimately the small mass ions (Figure 7.13.), 

which are carrying some component with mass 396 amu.  
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Figure 7.14. (a) TOF mass spectra of ILFF electrospray in high-current identifying the 400-
550 amu/e region of the TOF mass spectrum with the low mass range offset by four PDA 

blocks. (b) The TOF mass spectra of ILFF electrospray in high-current offset by one EMIM+ 
cation plus one PDA block to identify the four-particle species, each of which had one of four 

EMIM fragments attached to an EMIM+ plus one PDA. 

The ILFF copolymer contained a long backbone of two fundamental building blocks, 

a PMP block and PDA block. At the end of these chains are two end groups, CH3CHCOOH 

for the 60 PDA blocks of the copolymer, and CS3C4H9 for the 10 PMP blocks of the 

copolymer. A mass of 396 amu is reached if a neutral component consisting of four of the 

PDA blocks is considered with the charge coming from the various EMIM+ low mass 

fragments terminating with a contribution from the EMIM+ cation at m/q of 507 amu/e. If 

the EMIM+ n = 0 cation significantly contributes to the signal in the 502-amu/e region, the 

relative intensity of the n = 1 EMIM+-[EMIM+-NTf2
-] ion to the n = 0 becomes difficult to 

disentangle without higher resolution investigation. 

The mass region from 280-400amu/e is explored in a similar fashion to the 400-520 

amu/e region in Figure 7.14.b). Like the progression observed above, key mass spectral 

features are separated by known fragment masses of EMIM+. The initial sequence begins 

at 283 amu, tentatively assigned to the EMIM+ cation paired with a single PDA block and 
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the associated CH3CHCOOH end group. A single PDA block with the end group has a 

mass value of 172 amu and, when coupled to the EMIM+ cation, results in an m/q value of 

283 amu/e with a net +1 charge. Each subsequent step at higher masses (+29 amu, +55 

amu, etc.) is the inclusion of neutral (C2H5, MIM, etc.) fragments resulting from EMIM+ 

fragmentation. The best example of a pairing with a neutral fragment in EMIM-NTf2 is the 

species that occurs at 140 amu/e and is assigned to EMIM+ with a C2H5 neutral fragment. 

In contrast to the progression in Figure 7.14.a), there is no significant intensity at the next 

step in the sequence (+111 amu) since, under this hypothesized assignment, this would 

result in a doubly charged species. Unfortunately, the species that would appear at m/q = 

455 amu/e, and would be assigned to two PDA blocks with end group and an EMIM+ 

cation, appears at mass values encompassed in the four PDA blocks + fragment ion 

sequence highlighted in Figure 7.14.a). Similarly, the three PDA blocks + fragment ion 

sequence should begin at m/q = 299 amu/e, which lies in the middle of the Figure 7.14.b) 

sequence. No evidence of other multiples of PDA blocks, with or without the end group, 

was observed in the mass spectrum. 

7.4.3. Varying Magnetic Field Strength 

Another observation made during the experiments was the mass spectra dependence on 

the change in magnetic field strength. A correlation existed between the magnetic field 

strength and the ratio of n = 0 cations to n = 1 cations, as observed in Figure 7.8. A similar 

trend was also seen in Figure 7.9. between magnetic field strength and the ratio of the 

relative intensity of n = 0 to the relative intensity of the peak at 430 amu/e. Qualitatively, 

this suggests that a higher magnetic field actively induced the emission of the lighter, and 
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thus faster, particles in the center of the electrospray beam. The physical mechanism behind 

the shift to lighter-mass emission is likely a change in general shape of the peak formed by 

the Rosensweig instability (Figure 7.6.). The tip radius of the Rosensweig peak appeared 

to decrease with an increase in magnetic field strength. This would further enhance the 

electric field to the critical field required to dissociate heavier ion species into lighter ions 

and fragments. Therefore, a Rosensweig peak subjected to higher magnetic fields would 

emit higher quantities of lighter ion species. Potentially, the correlation could have been 

the result of the magnetic field acting on the focusing and TOF optics of the facility. This 

could lead to instrument-throughput preferentially increasing or decreasing the intensity of 

some peaks. 

Any correlation between ion intensity peaks and the magnetic field strength in the anion 

TOF mass spectra of the ILFF electrospray beam could not be measured, Figure 7.9. This 

was because anion spectra had only one ion species, and the method used to determine 

magnetic field effect required comparison between the peak intensities of multiple ion 

species.  

7.4.4. Comparison between Rosensweig Peak Electrospray Source and 
Solid Needle Electrospray Source 

A comparison between the TOF mass spectra of the ILFF electrospray from a RP-ES 

and a neat IL electrospray from the SN-ES was useful to reference the Rosensweig peak 

electrospray technique against an established device. Figure 7.15. shows the mass spectra 

of electrosprays from both the SN-ES and RP-ES. 



www.manaraa.com

216 

The cation spectrum of the SN-ES matched closely to the cation spectrum of the RP-

ES in low-current mode (pink and light green traces Figure 7.15.a)), suggesting that the 

RP-ES operates like a needle when in the low-current mode. When in high-current mode, 

though, the RP-ES emitted several peaks that are not seen in the needle spectrum. These 

peaks, as mentioned previously, are believed to be associated with components of the 

copolymer used for steric stabilization. Furthermore, the intensity of the n = 1 cation 

species relative to the n = 0 cation species was much greater in high-current mode 

compared to the SN-ES or low-current mode of the RP-ES, owing to higher flowrate, 

providing further evidence that the RP-ES is to needle-like when in low-current mode. 

Comparing the anion spectra of the RP-ES and the SN-ES, a peak in the ILFF spectrum 

that is not associated with fragments or neutrals of the IL appears at 310 amu/e. Therefore, 

it is believed that these peaks are associated with other components of the ILFF. The peak 

at 19 amu/e in the needle anion spectrum appeared in the RP-ES anion was associated with 

the F- anion fragment. The unknown peak at 350 amu/e that was measured in the IL 

spectrum also appeared in the RP-ES spectrum, though it was combined with the unknown 

peak at 315 amu/e, attributing to its peak broadness. The assignment of this peak is 

unknown and would require further testing of both the IL and ILFF electrosprays from the 

SN-ES and RP-ES, respectively. 
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Figure 7.15. a) Cation and b) anion TOF mass spectra of an electrospray beam from the RP-
ES and the SN-ES. In the main plot of a) the spectra are shifted by artificially adding 50 and 
100 amu/e to the light-blue and red traces. In the inset plot of a) and in b) the baselines of the 

intensity axis are intentionally shifted by arbitrary amounts. The shifts in the spectra were 
done for clarity. The magnetic field strength for the RP-ES was 333.9 Gauss. 

Comparing the anion spectra of the RP-ES and the SN-ES, a peak in the ILFF spectrum 

that is not associated with fragments or neutrals of the IL appears at 310 amu/e. Therefore, 
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it is believed that these peaks are associated with other components of the ILFF. The peak 

at 19 amu/e in the needle anion spectrum appeared in the RP-ES anion was associated with 

the F- anion fragment. The unknown peak at 350 amu/e that was measured in the IL 

spectrum also appeared in the RP-ES spectrum, though it was combined with the unknown 

peak at 315 amu/e, attributing to its peak broadness. The assignment of this peak is 

unknown and would require further testing of both the IL and ILFF electrosprays from the 

SN-ES and RP-ES, respectively. 

The emission current of the two sources differed as well. The needle source operated 

stably at 1.75 ± 0.1 µA for the entire hour span of testing. The RP-ES had three emission 

modes, two of which, the low- and high-current modes, can be sustained continuously, 

however, not as stably with emission currents of 5 ± 4.5 µA and 50 ± 25 µA. The third 

transient-emission mode lasted only five minutes, though its emission current varied 

relatively less at 25 ± 4.5 µA. 

I would like to note that the difference between the SN-ES and RP-ES boundary 

conditions (BCs) could influence the emission characteristics from each source. The 

SN-ES is comprised of a solid needle with a thin layer of liquid over the surface, whereas 

the RP-ES is only a continuous liquid peak. This means that the liquid velocity and thus 

charge conduction/convection within the volume of the propellant on the surface of the 

SN-ES would be dependent on both a solid-liquid and liquid-gas interface, whereas the 

RP-ES liquid velocity and charge advection is only dependent on the liquid-gas interface. 

This could explain the difference in emission current magnitude, which was higher for the 

RP-ES, and the products within the electrospray beam. 
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7.4.5. Comparison between Rosensweig Peak Electrospray Source and 
Capillary Electrospray Source 

A comparison between the TOF mass spectra of the ILFF electrospray from a RP-ES 

and a neat IL and ILFF electrospray from the CES was done to understand the Rosensweig 

peak electrospray technique against another established device. However, the summed 

mass spectra from the CES presented in Chapter 6 were each composed of a summation of 

mass spectra collected at a range energy defects. As spectra from the RP-ES were only 

collected at a single pulsing plate potential equivalent to an energy defect of 50 eV, the 

best comparison between the two sources requires only examining those spectra collected 

for pulsing-plate potentials of 50 V below the extraction potential. Figure 7.16. shows the 

50-eV mass spectra of an electrospray from the CES operating on five propellants with 

0-Gauss and 200-Gauss magnetic fields applied to the source; the propellant flowrate was 

0.63, 0.52, 0.47, 0.54, 0.54 nl/s for neat IL, ILFF-10, ILFF -20, ILFF -30, ILFF -40, 

respectively. Also included in Figure 7.16. are the spectra from the RP-ES operating with 

a 520.5 Gauss magnetic field in low- and high-current modes. The intensity of the n = 0 

peak of both RP-ES spectra were normalized to the intensity of the n = 0 peak of the 

ILFF-10 spectrum as the intensity between the two experiments is not comparable due to 

changes in settings and conditions of the TOF-MS. However, the comparison provided an 

idea of the relative species emitted in the low-mass range for each source.  Also note that 

the plateau observed in the CES spectra between 100 and 700 amu/e is the result of a longer 

pulse width used during mass spectra collection than for RP-ES mass spectra collection 

(100 μs compared to 2.5 μs), and was observed in all CES spectra. The plateau was 
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attributed to species in the electrospray beam that were allowed into the TOF flight tube 

with uncertain flight paths or starting energies. 

Figure 7.16. Cation TOF mass spectra from the CES and RPES collected at an energy 
defect of 50 eV. The magnetic field applied to the CES was a) a 0-Gauss and b) a 200-Gauss,
 and 520.5 Gauss for the RP-ES. Curves in the main plots of a) and b) are artificially shifted 
by 25, 50, 75, 100, 150 and 200 amu/e for the purple, blue, green, yellow, light-blue and red 
 curves, respectively; the inset plots of a)and b) are arbitrarily shifted on the intensity axis.
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Comparing the spectra from the CES to spectra from the RP-ES, Figure 7.16., revealed 

that the RP-ES operating in high-current mode produced similar species to a capillary 

emitter. Interestingly, the peak observed in the RP-ES spectra at 430 amu/e is not apparent 

in CES spectra, even for ILFF propellants with 14.15 weight-percent NPs (compared to 

26-wt% NPs in ILFF used in the RP-ES). Comparing the average m/q of the ILFF-50 CES 

electrospray at minimum flowrate of 0.45 nl/s to the RP-ES in high-current mode, the 

average m/q in the center of the beam was more than ten-times greater in the CES, (179,000 

amu/e), than in the RP-ES, maximum of (16,500 amu/e). This may suggest a stark 

difference in how the RP-ES operates and emits, including lighter droplet populations. As 

mentioned previously, spectra from RP-ES were not collected for the mass range necessary 

to observed droplets in the CES, nor was the collection of spectra from off-axis electrospray 

emission completed. Therefore, droplets very well could exist in the RP-ES electrospray 

beam.  

Lastly, like the BCs between the RP-ES and the SN-ES, the BCs differed between the 

RP-ES and the CES. Specifically, both sources have a BC related to the liquid-gas 

interface, while the CES inherently has another BC from the solid-liquid interface between 

the capillary needle surface and the propellant. This would potentially lead to differences 

in the liquid velocity and thus charge conduction/convection within the volume of the 

propellant. However, the differences in BCs are less influential to liquid and charge motion 

in the emission sites of the two sources than the differences in the propellant feed method 

in each source. I.e. the CES has a propellant flowrate that is pressure-driven, whereas the 
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RP-ES flowrate is defined by the extraction potential.[81] The difference in propellant feed 

means the required flowrate for emission differed significantly resulting in different 

emission products; e.g. the CES requires higher flowrates and produces many ion and 

droplet species,[58] whereas the flowrate of a the RP-Es is likely similar to a needle emitter 

like the SN-ES is orders of magnitude less than that of a capillary, and only produces two 

or three ion species.[3, 104] Therefore, the differences in propellant feed, and subsequent 

differences in flowrate are likely the driving factors in the liquid velocity and charge 

advection at the emission site of both sources. 

7.5. Conclusions: Rosensweig Peak Electrospray Source 

This chapter presented the results from an apparatus which was built to use an ILFF 

propellant and the Rosensweig instability to produce electrospray.  The emission current 

and the beam composition of the Rosensweig peak electrospray source (RP-ES) were 

measured using a Faraday plate/cup, a QCM, and a TOF mass spectrometer. The ILFF used 

was the NJ397074 batch, which comprised of 26.3-wt% iron-oxide nanoparticles, 3.9 wt% 

copolymer, and 69.8 wt% EMIM-NTf2. The apparatus used one, two, or three permanent 

magnets to instigate the Rosensweig instability which produced magnetic field strengths 

that ranged from 333.9 Gauss to 690.5 Gauss.  

During emission of the ILFF four modes of operation were observed. Three were easily 

attainable, a transient mode at the start of testing which emitted at 20-30 µA, a second at 

low currents of 1-10 µA, and a third at higher currents of 30-80 µA, which were called 

transient-emission, low-current, and high-current modes, respectively. The fourth mode 



www.manaraa.com

223 

occurred when the extraction potential was increased beyond the high-current mode and 

emission in the mode would potentially bridge the gap between the ILFF peak and the 

extraction plate. The RP-ES was observed to emit with a high mass flow rate, up to 6 ng/s, 

in the first minutes of emission, after which the its flow rate dropped several orders of 

magnitude during sustained operation.  

The cation and anion spectra from the RP-ES and SN-ES were collected at only a single 

pulsing plate potential which captured particles with energies greater than 90 percent of the 

extraction potential. Analyzing the collected TOF mass spectra revealed that electrospray 

beams from the RP-ES and SN-ES emitted only two cation and anion species, n = 0 and 

n = 1. The low- and high-current emission modes of the RP-ES differed in the ratio of n = 0 

to n = 1 emitted; specifically, the spectra displayed a correlation between emission current 

and the relative intensity fraction of the n = 1 ion species. Furthermore, the electrospray 

beams from the high-current mode were shown to be partially-comprised of fragments of 

the respectively anion or cation. This correlation is believed to be a consequence of change 

in shape of the Rosensweig peak during adjustments in extraction voltage.  

An adjustment in the magnetic field strength was shown to change the shape of the 

Rosensweig peak. However, there appeared to be no correlation between the H-field and 

the cation or anion spectra. 

Comparing mass spectra, the RP-ES and SN-ES revealed that the ILFF electrospray 

produced from the RP-ES in low-current mode resembled that of a neat IL electrospray 

emitted from a needle. In high-current mode the relative production of the n = 1 ion species 

increased significantly. This could be the result of higher electric field as observed in 
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similar needle studies. The primary similarity between the sources was the limited number 

of ion species produced (n = 0 and n = 1).  

Other masses existed in the mass spectra from the RP-ES that were not associated with 

a specific ion species. Peaks in the cation spectrum were believed to be associated with 

different combinations of the fragmented n = 0 cation, with a single peak identified as a 

combination of one fragment group of the copolymer and the n = 0 cation. The peaks in 

the anion spectrum were believed to be associated with fragments of the n = 0 anion, with 

two peaks associated with fragments of the copolymer paired with the n = 0 anion, and a 

fragment of the n = 0 anion.  

However, in the ILFF spectra from the CES such artifacts were absent; this led to the 

conclusion that the products were a result the differing emission process between the two 

sources. Other differences between the sources include the absence of heavier ion species 

and droplets in the TOF mass spectra of the RP-ES. However, this was a consequence a 

relatively small m/q acquisition range during mass spectra collection from the RP-ES. This 

motivates future studies using the extended range of the mass spectra collected from the 

CES. 
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Chapter 8 

Conclusions 

8.1. Introduction 

To reiterate, the goals of this research were fivefold: (1) separate the effects of magnetic 

nanoparticles from the effects magnetic stress on the electrospray emission of the CES, (2) 

separate the effects of magnetic nanoparticles from the effects magnetic stress on the 

electrospray beam structure of the CES, (3) separate the effects of magnetic nanoparticles 

from the effects magnetic stress on the mass-to-charge of masses emitted from the CES, 

(4) characterize the emission current from a solid-structure-free Rosensweig peak 

electrospray source (RP-ES), (5) measure the mass-to-charge of masses emitted from the 

RP-ES. This chapter revisits the results and conclusions drawn from Chapters 4 – 7 to 

ascertain how well each of these goals were met, beginning with a summary of the 

experiments, and continuing into conclusions pertaining to each of the research goals. The 

chapter ends with a discussion on potential avenues one can take to expand and/or improve 

the work presented in this dissertation.  

8.2. Summary of Experiments and Findings 

A capillary electrospray source was manufactured to operate on EMIM-NTf2 ferrofluid 

propellants, and the lower bound of the stability island of the source was established for 

five propellants, with and without magnetic field. Onset potential was also measured for 
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the capillary source subjected to a magnetic field. Three beam diagnostics were performed 

on the CES running on neat IL and several ILFF propellants: beam divergence, beam 

energy and TOF mass spectrometry, both with and without magnetic field. Conclusions are 

presented in 8.2.1. and 8.2.2. 

An electrospray source which facilitated the formation of a single EMIM-NTf2 

ferrofluid peak using the Rosensweig instability was designed and manufactured. 

Diagnostics including measurement of emission current, mass flowrate and TOF mass 

spectrometry were performed on the source and compared to normal operation of the CES 

operating on neat IL and a solid needle electrospray source. Conclusions are detailed in 

8.2.3. 

8.2.1. Operation of a Magnetic-Stress-Free ILFF Electrospray Source  

The wt% of NPs in the base neat IL of the propellants had a significant effect on the 

stability island of the source, specifically their increased concentration correlated to a 

proportional increase of both the necessary extraction field and volumetric flowrate. 

Furthermore, higher wt% of NPs correlated to higher emission currents of the source (for 

a given flowrate). However, a consequence of the higher NPs was an increase in the 

emission current fluctuation. The instability caused variation of the current equal to 

upwards of 25% the meant current of the source (ILFF-50 propellant) The conclusion was 

that the NPs affect the stability island as well as emission stability, with the former 

providing the necessary settings for the remainder of the research. 
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The divergence of the source electrospray beam was measured over three flowrates for 

neat IL, ILFF-20, ILFF-30, and ILFF-40 propellants and revealed that both the flowrate 

and the wt% NPs in the propellant were influential to half-angle of the beam; an increase 

in flowrate broadened the electrospray beam for all propellants, and the addition of NPs 

produced broader beams than neat IL. Furthermore, higher wt% NPs ILFF propellants were 

more greatly intercepted by the extractor plate, reducing the percentage of the permitted 

beam current by upwards of 73-percent. Also, the higher wt% NPs ILFF propellants had 

high current densities at large half-angles, relative to lower wt% NPs propellants. Both 

observations were indicative of broadening due to increased NPs in the propellant. 

The electrosprays of using higher wt% NPs ILFF propellants had ion  that were 

consistently lower, relative to the extraction potential, than those of the low wt% NPs 

propellants. Furthermore, electrosprays from higher wt% NPs propellants emitted with ion 

species that were in two energy populations, with the second energy population at 30 to 50 

percent of the extraction potential. This was determined to coincidence with two ion 

emission sites on the Taylor cone-jet structure.   

The specific mass species of electrosprays from the CES were measured using a 

TOF-MS. Spectra collected from the CES for neat IL, ILFF-10, ILFF-20, ILFF-30, and 

ILFF-40 at varying pulsing plate potentials, which were sum into a single summed mass 

spectrum per operational setting. This summed mass spectrum captured emitted particles 

with kinetic energies greater than 50 percent of the extraction potential. From the summed 

mass spectra, it was determined that the CES operated in a mixed ion/droplet regime 

invariant of the propellant. The highest number of cation species identified within the beam 
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was n = 0 through n = 13 for neat IL; fewer species were observed in the ILFF propellants 

proportional to the weight-percent NPs in the ILFF, e.g. only n = 0, 1, and 2 could be 

identified in the ILFF-40 spectrum. This could stem from ILFF electrosprays operating 

closer to their respective minimum flowrates. The mass fractions for the summed mass 

spectra were also determined for each of the propellants, which showed that the highest 

fraction of the mass flowrate of the source was transported by medium sized droplets (10 

to 25 nm in radius). These droplets were hypothesized to be in three droplet distributions 

with center m/q ranging from 38,000 to 172,000 amu/e. The mechanism behind the 

distributions widths was not measured but is believed to be the product of varying size and 

charge of droplets within each distribution.  

8.2.2. Operation of a Magnetically Stressed ILFF Electrospray Source  

The magnetic stress applied to the CES provide by two Helmholtz coils had several 

effects on the operation of ILFF electrosprays. Subjecting the CES to a 200-Gauss 

magnetic field while operating on ILFF propellants reduced the emission current of the 

source and increased the range of stable flowrates of the CES operating on several of the 

ILFF propellants. Furthermore, subjecting the CES to a magnetic field in discrete steps, 

while operating on the parent ILFF revealed an inverse linearity between the magnetic field 

strength and the onset potential of the source. Magnetic stress also induced fluctuations in 

the emission current upwards of 25 percent of the time-resolved mean; the magnitude of 

the fluctuations was correlated to the weight-percent NPs in the ILFF. 
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Magnetic stress also increased the ion  of the primary energy population of the 

emitted species from the CES operating on the ILFF propellants, and increased the ion  

of the secondary energy population if it appeared in the RPA traces. Electrosprays of 

ILFF-30 were most affected, increasing by more than 10 percent for multiple operating 

conditions.  

The effect a magnetic stress on the beam divergence was less conclusive due to 

fluctuations in the emission current. When statistically significant though, the magnetic 

field either broadened or tightened the beam depending on the propellant, flowrate, and 

extraction potential. The most significant results were measured while running the ILFF-20 

propellant at 0.47 nl/s and 1600 V, where the application of the magnetic field increased 

the fraction of the current in the center of the beam by approximately 25 percent. 

Comparing the summed mass spectra collected from the CES subjected to a 200-Gauss 

magnetic field for neat IL, ILFF-10, ILFF-20, ILFF-30, and ILFF-40 generally showed that 

a magnetic stress had less of an effect on emitted mass species of neat IL. The CES was 

still shown to operate in the ion/droplet mode, and had the highest fraction of the mass 

flowrate transported by medium sized droplets. The fraction of the mass transported by 

droplets greater than an estimated 25-nm radius was increased. Owing to the uncertainty 

in the peak intensities, only results from the ILFF-30 and ILFF-40 showed any true 

magnetic effects, which revealed that the magnetic stress changed the relative intensity of 

the ion species; however, the change was in no particular direction (increase/decrease) and 

had no correlation to wt% NPs of the propellants, and therefore may have been the results 

of fluctuations in the emission current induced by the magnetic field.  
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Overall, a magnetically-stressed electrospray was observed have a potentially greater 

m/q in the center of the electrospray beam, however, this was only achievable for certain 

propellants and (Q, Vext) settings. The mechanism behind the observed influence from the 

magnetic stress was theorized to be the changed the shape of the emission site structure, 

including the Taylor cone and jet, caused by the magnetic field, which, consequently, 

changed the specific emission products of the source as well as the energy of the emission 

products. While these conclusions were provoking, I would note that using the ILFF 

propellant as a magnetic-field free electrospray had several shortcomings, including beam 

broadening and emission fluctuations, which the magnetic field could not fully correct. 

8.2.3. Conclusions on Rosensweig Peak Source Operation 

Development of a source using a single peak of the Rosensweig instability in ILFF 

provided the next step in ILFF electrospray research, i.e. electrosprays that do not require 

solid emitter structures. The source was found to operate in four modes, each with different 

emission characteristics; the transient-emission mode (startup, 20-30 µA), low-current 

mode (stable operation, 1-10 µA), and high-current mode (stable operation, 30-80 µA) and 

very-high current mode (unstable, >100 µA).   The Taylor cone structure was expectedly 

susceptible to changes in magnetic field strength however, the effects on stable emission 

were inconclusive. 

The individual mass species of both a positive and negative electrospray from the 

RP-ES and SN-ES were measured using a TOF-MS. The spectra from the RP-ES show 

only two ion species, n = 0 and n = 1, existed in both positive and negative electrospray 

beams. Switching from low-current to high-current emission of the RP-ES increased the 
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production of the n = 1 ion species with respect to n = 0, while also introducing fragments 

and small distributions not associated with any ion species. However, a change in magnetic 

field strength had no significant effect on the emission current from the RP-ES. 

While the spectra for the RP-ES and SN-ES were not identical, it was surmised that an 

electrospray from a Rosensweig peak emitted with a similar composition to that of a needle 

electrospray. However, the emission current of the RP-ES was up to 25 times as high as 

the SN-ES, leading to the conclusion that the source produced relatively higher amounts of 

ions, but at either lower energies or higher half angles which could not be collected by the 

TOF mass spectrometer. 

Comparison of the RP-ES to the CES revealed that the two sources operated quite 

differently, both in emission current (RP-ES had higher emission currents), average mass-

to-charge ratio (CES had higher average m/q). Comparing the individual m/q spectra of the 

two sources revealed that the CES produced a beam with more cation species and large 

droplet distributions, but no small m/q distribution, leading to the conclusion that the 

RP-ES produced a more efficient beam with respect to mass consumption. However, the 

lack of mass spectra collected from the RP-ES at different pulsing plate potentials and at 

larger ranges of m/q may have omitted potential emission products, including droplets and 

nanoparticles, which may reverse this conclusion. 

Overall, the study of a Rosensweig peak as an emission structure for electrospray 

emission revealed that it emits a central electrospray beam with a high fraction of light ions 

and could be a useful alternative to a needle electrospray emitter. However, further studies 
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are required to confirm whether other particles/droplets exist at lower energies or higher 

m/q, and what the electrospray beam look like at higher beam half-angles.  

8.3. Achievement of Research Goals 

When I entered this research, little information existed on the use of ILFFs as 

electrospray propellants, and as such my primary goal was to understand how these fluids 

worked in electrospray devices. To that end, this dissertation adds significant findings to 

this field of electrospray. Specifically, I have (1) obtain the lower boundaries of the 

operational stability island, including emission current and onset potential, for a capillary 

electrospray operating on several of the new ILFF fluids, (2) measured two characteristics 

of electrospray beams using the ILFF fluids, (3) determined the composition along the 

beam axis of an electrospray emitted from the capillary source operating the ILFF fluids, 

(4) measured the influence of an applied and/or varied magnetic field on each all of these 

measurements/characteristics of ILFF electrospray from a capillary source, and lastly (5) 

designed, built and measured the emission current and beam composition of a ILFF 

electrospray source formed from a single fluid peak of the Rosensweig instability.  

With respect to the goals I set out to achieve, using the capillary source and Helmholtz 

coil I separated the effects of the magnetic field and nanoparticles on the onset potential, 

stability island, beam divergence, beam energy, TOF mass spectra of an ILFF capillary 

electrospray source. In each case, the nanoparticles appeared to be the driving factor for 

any changes observed between the neat IL and ILFF electrosprays. In some of the 

experiments, the techniques/instruments used did not facilitate the best collection of data; 
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as such some experiments on the structure of the beam (i.e. beam divergence), while 

noteworthy, need to be re-examined to make conclusive statements on the specific effects 

of either nanoparticle or magnetic field. This is discussed some in the next section.  The 

final two goals were also achieved using the Rosensweig peak electrospray source (RP-ES) 

and provided useful results to continue the research on electrosprays from the ILFF 

instability. 

8.4. Future Work 

As noted throughout this dissertation, the research presented only attempted to answer 

several questions about the new ILFF propellants and source within which they are used. 

As such, there are several ways in which the results from this research can be strengthened, 

and several ways in which research using ILFF propellants and sources can be expanded. 

This extent of the stability island of the CES determined in this research is not complete. 

It provided a sample of extraction potentials and flowrates from which several conclusions 

about the general effect nanoparticles and magnetic field were made. However, future work 

should expand on the range, including higher flowrates and extraction potentials to 

determine the upper limit of stability. Furthermore, the examination should involve 

extraction potentials in both polarities. 

The beam diagnostics on the CES could be expanded and perfected. For example, a 

rotatable source would allow for the measurement beam energy over the entire electrospray 

beam. Also, a larger and collection disk with smaller incremented Faraday plates would 

provide a better resolved picture of the source’s beam divergence. Using a rotatable 
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Faraday probe for this could also be possible, but a new experimental setup would be 

necessary as the Helmholtz coil currently inhibits such a device due to the small inner 

diameter. 

While the summed mass spectra of the CES collected in this study provided a base for 

comparison between the new propellants and traditional IL, they did not capture the entire 

electrospray beam. As such, a future project should examine the spectra of the CES for 

pulsing plates potentials from 0 V to maximum extraction potential, as well as smaller 

increments in pulsing plate potential (20 V). This well ensure that emission products from 

the entire electrospray beam are captured. Also, an extension of the m/q range may provide 

the evidence of nanoparticles emitted in the electrospray beam. 

A study on the ion and particle mobility of a ILFF Taylor cone is also suggested, and 

should examine if/how the magnetic field or colloidal particles influences the charge and 

mass mobility at the emission site. This could potentially explain the relative change in 

emission current of ILFF electrosprays while magnetically stressed. 

Lastly, with regards to the RP-ES, the extent of studies on the source in this research 

were limited, and the potential for a complete characterization of the source is possible if 

similar diagnostics completed on the CES are done using the RP-ES. The most beneficial 

test to help define the electrospray from a Rosensweig peak would be collecting summed 

mass spectra for the source with a m/q range from 0-1,000,000 amu/e). This would provide 

a measured of the difference between the RP-ES and CES electrospray beam composition. 
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μAmmeter Calibration Tables 

Table A.1. Calibration for uA1 and uA2 microammeters 

μA1  μA2 
Current (mA) μA Voltage (V) 

 
Current (mA) μA Voltage (V) 

0 3.5241 0 3.4 
0.01 3.5245 0.01 3.4017 
0.02 3.5248 0.02 3.4045 
0.03 3.5254 0.03 3.4067 
0.04 3.5257 0.04 3.4083 
0.05 3.526 0.05 3.4115 
0.06 3.5261 0.06 3.4133 
0.07 3.5263 0.07 3.4146 
0.08 3.527 0.08 3.4161 
0.09 3.5275 0.09 3.4174 
0.1 3.528 0.1 3.4184 
0.11 3.5283 0.11 3.4196 
0.12 3.5281 0.12 3.4204 
0.13 3.5284 0.13 3.4222 
0.14 3.5288 0.14 3.4235 
0.15 3.5291 0.15 3.4254 
0.16 3.5292 0.16 3.4271 
0.17 3.5296 0.17 3.429 
0.18 3.5301 0.18 3.431 
0.19 3.5305 0.19 3.4308 
0.2 3.5306 0.2 3.4322 
0.21 3.5309 0.25 3.4386 
0.22 3.531 0.3 3.4463 
0.23 3.5315 0.35 3.4539 
0.24 3.5322 0.4 3.4616 
0.25 3.5325 0.45 3.4654 
0.26 3.5331 0.5 3.4736 
0.27 3.5334 0.55 3.4811 
0.28 3.5334 0.6 3.4881 
0.29 3.5341 0.65 3.4956 
0.3 3.5343 0.7 3.5034 
0.35 3.5361 0.75 3.5103 
0.4 3.5383 0.8 3.5192 
0.45 3.5402 0.85 3.5261 
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0.5 3.5422 
 

0.9 3.5325 
0.55 3.5436 

 
0.95 3.5392 

0.6 3.5452 
 

1 3.5463 
0.65 3.5463 

   

0.7 3.5483 
   

0.75 3.5504 
   

0.8 3.5522 
   

0.85 3.5543 
   

0.9 3.5558 
   

0.95 3.5571 
   

1 3.5587 
   

0 3.5233 
   

 

Table A.2. Calibration curves for uA2 microammeter 

μA2  
Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 

Current (μA) μA Voltage (V) 
0 3.693 4.249 4.238 4.234 4.044 4.2165 4.238 4.226 

100 3.712 4.259 4.257 4.253 4.054 4.234 4.255 4.243 
300 3.7485 4.294 4.291 4.288 4.089 4.272 4.29 4.278 
500 3.7885 4.331 4.325 4.324 4.126 4.308 4.327 4.314 
700 3.8215 4.368 4.363 4.359 4.163 4.344 4.364 4.35 
1000 3.8755 4.418 4.416 4.413 4.213 4.398 4.419 4.404 
1200 

       
4.44 

1500 
       

4.495 
1800 

       
4.545 

2000 
       

4.582 
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Emission Frequency in Electrospray Onset 

Experiments 

The onset potential experiment was also completed at vacuum pressure following the 

same procedure. The test yielded inconsistent emission even after the onset potential was 

reached and maintained. Note that with the application of the magnetic field, the frequency 

of emission onset and cessation was appreciably reduced, Figure B.1. 

As noted previously, the onset potential of an electrospray source is higher than the 

extraction potential necessary to maintain emission. Normally when the onset potential was 

reached, the source continued to emit so long as it was sufficiently fed with propellant or 

the extraction potential applied to remained above a critical limit. The periodic emission 

onset and cessation observed in Figure B.1. occurred during an increase in extraction 

potential. This suggests that a lack of propellant (i.e. insufficient vial pressure) caused the 

phenomenon and that the measurement of the onset potential would not be for stable cone-

jet emission, which is outside the scope of this research. While the experiment at vacuum 

was not successful in accurately measuring onset potential, it did show that the magnetic 

field affects other emission characteristics from a capillary source, specifically, it reduces 

the frequency of fluctuations in emission current. Similar results have been observed in my 

past experiments, wherein fluctuations in the emission current of an ILFF electrospray 

during operation were significantly reduced through the addition of a 200-Gauss magnetic 

field. 
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Figure B.1. Frequency in the emission current caused by zero-flow to needle apex while 
electrospray was subjected to a) zero magnetic field, b) a 100 Gauss magnetic field, and c) a 
200 Gauss magnetic field. d) The frequency observed in the emission current plotted against 

the magnetic field strength subjected to the electrospray. 
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Current Density Plots from Beam Divergence 

Experiment 

Plots for the current densities as a function of beam half-angle for all operating 

conditions of the CES (including several presented in Sections 5.3.2. and 5.3.3.) are 

provided below. Those from Neat IL ILFF-20, ILFF30, and ILFF-40 electrosprays are in 

Figure C.1. and Figure C.2., Figure C.3. and Figure C.4., Figure C.5. and Figure C.6., and 

Figure C.7. and Figure C.8., respectively. 

Figure C.1. Current density plots for neat IL electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.315 nl/s and 1400 V and b) 0.63 nl/s and 1400 V. Error 

shading is one standard deviation of mean current density. 
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Figure C.2. Current density plots for neat IL electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.315 nl/s and 1500 V, b) 0.63 nl/s and 1500 V, c) 0.945 

nl/s and 1500 V, d) 0.315 nl/s and 1600 V, e) 0.63 nl/s and 1600 V, and f) 0.945 nl/s and 
1600 V. Error shading is one standard deviation of mean current density. 
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Figure C.3. Current density plots for ILFF-20 electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.705 nl/s and 1600 V, b) 0.47 nl/s and 1700 V, c) 

0.705 nl/s and 1700 V, d) 0.94 nl/s and 1700 V, e) 0.47 nl/s and 1800 V, and f) 0.705 nl/s and 
1800 V. Error shading is one standard deviation of mean current density. 
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Figure C.4. Current density plots for ILFF-20 electrospray from CES with and without B-
field. Settings for Q and Vext are a)0.94 nl/s and 1800 V, and d) 0.94 nl/s and 1900 V. Error 

shading is one standard deviation of mean current density. 

Figure C.5. Current density plots for ILFF-30 electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.454 nl/s and 1700 V and b) 0.636 nl/s and 1700 V. 

Error shading is one standard deviation of mean current density. 
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Figure C.6. Current density plots for ILFF-30 electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.636 nl/s and 1800 V, b) 0.818 nl/s and 1800 V, c) 0.636 
nl/s and 1900 V, d) 0.818 nl/s and 1900 V, and e) 0.818 nl/s and 2000 V. Error shading is one 

standard deviation of mean current density. 
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Figure C.7. Current density plots for ILFF-40 electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.47 nl/s and 1700 V, b) 0.47 nl/s and 1800 V, c) 0.62 nl/s 

and 1800 V, d) 0.78 nl/s and 1800 V, d) 0.47 nl/s and 1900 V, and f) 0.62 nl/s and 1900 V. 
Error shading is one standard deviation of mean current density. 
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Figure C.8. Current density plots for ILFF-40 electrospray from CES with and without B-
field. Settings for Q and Vext were a) 0.78 nl/s and 1900 V, b) 0.62 nl/s and 2000 V, and c) 
0.78 nl/s and 2000 V. Error shading is one standard deviation of mean current density.
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Motivation of Beam Energy Experiments 

A motivating factor for the beam energy experiments was the measurement of beam 

energy using TOF mass spectrum data for magnetic-field-free and magnetically-stress 

ILFF electrosprays. The pulsing plates of the TOF-MS can act as an RPA by systematically 

increasing their bias potential until it equals that of the maximum particle potential, while 

measuring the current that enters the extraction region via a Faraday cup and the TOF MCP. 

Figure D.1. illustrates an example of how the pulsing plates were used as an RPA; in doing 

so it shows a correlation exists between the magnetic field strength and the kinetic energy 

of the ions emitted from the electrospray sources. In the figure, peak  of the spectra is 

greater than 1 for energies between 600-700 eV, indicating a higher intensity of the n = 0 

and n = 1 peaks of spectra collected from the source under a 200-Gauss magnetic field. 

This translates to an electrospray beam comprised of n = 0 and n = 1 ions with energies 

100 eV greater than the most energetic ions within the electrospray beam under a 0-Gauss 

magnetic field. The results of Chapter 5 aligned with these results from the TOF-RPA 

experiment, and confirmed the necessity to gather TOF spectra at as many possible 

energies to ensure that the emission products of an electrospray are completely captured. 
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Figure D.1. Ion peak intensity as a function of ion energy illustrating use of pulsing plates as 
an energy analyzer. The magnetic effect on ion energy can be measured through a 

comparison of the red (0 Gauss) and blue (200 Gauss) curves. 
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Magnetic Lorentz Force on Charged Particles in 

CES Electrospray Beam 

The magnetic Lorentz force acting on different species of particles and droplets was 

calculated to determine whether it influence beam tightening or expansion. The full Lorentz 

force is defined as,  

( v B)Lorentz q  F E . (E.1) 

The region after the extractor plate of the CES is free of electric field influence, 

therefore the electric field term, E, in (E.1) is zero; as such velocity, v, and magnetic field 

strength, B, are the only factors in calculating the Lorentz force. B is assumed to be a 

uniform to 200 Gauss field with a direction in line with the center axis of the electrospray 

beam. The velocity, v, of each particle species was calculated based on the kinetic energy 

imparted on a particle by travelling through the electric field, 2 2mv qE . Rearranging 

the kinetic energy equation to solve for v produces the relationship,  

2 ext
qv V
m

 , (E.2) 

where Vext is the extraction potential; the direction of the velocity vector is the beam half 

angle. As the magnetic component of Lorentz force only acts particles travelling orthogonal 

to the magnetic field, only the radial component of velocity determined by (E.2) is used in 

its calculation.  
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The solution of Lorentz force in this experiment in time-variant; a particle’s velocity 

vector is dependent on the amount of time the Lorentz force acts upon it, which 

consequently changes the magnitude of the Lorentz force. Thus, the Lorentz force acting a 

particle was calculated as a function of half-angle and its corresponding radial component 

of particle velocity. The starting velocity magnitude was assumed; this is an overestimate, 

as the velocity magnitude of an off-axis particle would be reduced by the Lorentz force as 

is progressed downstream. The magnitude of the Lorentz force was divided by the mass of 

the particle species to derive the acceleration, the second derivative of which provided the 

magnitude of orthogonal distance the particle shifted along its flight, Figure E.1.a). Simple 

trigonometry then produces the angular shift in in the velocity vector, Figure E.1.b). 

Figure E.1. a) Shift in particle location along the axis orthogonal to the electrospray beam 
axis after 41.75-mm of travel as a function of the half angle of the particle’s starting velocity 

vector. b) Angular shift of the velocity vector of a particle after 41.75-mm of travel as a 
function of the half angle of the particle’s starting velocity vector. The plotted particles are 

the primary species of ions and droplets in CES running on ILFF-30 propellant. 

Figure E.1. proves that the Lorentz force will have negligible effect on particles or 

droplets emitted from the CES as it pertains to the collection of beam current on the Faraday 



www.manaraa.com

261 

stack of the beam divergence experiment. Given that the velocity magnitude used in the 

derivation was an over-estimate only provides further proof of this conclusion. 

Another way to interpret the effect of Lorentz force is examining the Larmor radius of 

some of the particles that would be within the electrospray beam. The Larmor radius, 

,larmorr  also known as the gyroradius, is the radius of the circular motion that a charged 

particle takes when it is in the presence of a magnetic field, and is found by equating 

Lorentz force to the centripetal force. The result is the expression shown in (E.3). 

larmor
mvr
q B

  (E.3) 

Here, v , is the perpendicular velocity of a particle. 

The Larmor radius was calculated for ion species between n = 0 and n = 11, the two IL 

droplet species, and estimated IL coated NP all accelerated using a 2000-V extraction 

potential. v  of the particles differed depending on the half-angle of their initial velocity 

vector. The results are presented in  Figure E.2. The results show that the Larmor radius is 

greater than the distance between the extractor plate of the CES and the SRP of the Faraday 

stack (Chapter 5) unless the initial particle velocity has a half angle less than 0.75 degrees. 

This means that within the Faraday Plate diagnostic the particles are not attached to the 

magnetic field lines unless they are within the center 1.5 degrees of the electrospray beam. 

This also explains why the potential shift in particle trajectory shown in Figure E.1. is 

relatively small compared to the length of the Faraday stack; i.e. the Larmor radius for 

particles at high angles is orders of magnitude greater than the length of the Faraday stack 

or the length of the Helmholtz coil (10 cm), and, therefore, the particles would move 
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relatively little in the radial direction over the course of traveling through the Faraday 

Stack.  

Figure E.2. a) Larmor radius of ion species, droplet species and the estimated NP species as a 
function of the half angle of the particle’s initial velocity vector. b) Low-half-angle SRP 

Faraday plate in the Faraday stack (black dashed line at 41.75-mm) when the half-angle of 
the particles initial velocity vector is less than 1-degree. 
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Beam Energy plots from RPA Experiment 

This appendix provides the usable beam energy plots using all tested electrospray 

propellants, extraction potentials, and flowrates. Some of the RPA traces for certain 

flowrates were too noisy and consequently unmeaningful, and were therefore omitted for 

this appendix. 

Figure F.1. Beam energy plots for the ILFF-20 electrosprays at various (Q, Vext) settings 
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Figure F.2. Beam energy plots for the ILFF-20 electrosprays at various (Q, Vext) settings 
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Figure F.3. Beam energy plots for the ILFF-30 electrosprays at various (Q, Vext) settings 
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Figure F.4. Beam energy plots for the ILFF-30 electrosprays at various (Q, Vext) settings 
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Figure F.5. Beam energy plots for the ILFF-40 electrosprays at various (Q, Vext) settings 
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Figure F.6. Beam energy plots for the ILFF-40 electrosprays at various (Q, Vext) settings 
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Mass Spectra of ILFF Electrospray at Minimum 

Flowrate Operation 

Mass spectra were also collected for electrosprays running at the minimum flowrates 

of the original source, as specified in 4.3.2.c. The process of collecting and integrating the 

mass spectra for each flowrate is described by 6.3.1. and Appendix I. The summed mass 

spectra of the neat IL electrospray operating at the minimum flowrate, with and without an 

applied magnetic field, is show in Figure G.1., while the summed mass spectra for ILFF-10 

and ILFF-30, with and without an applied magnetic field are provided in Figure G.2. In 

both figures, the lower range of masses are shown in the main plot. The inset plot shows 

the larger m/q range illustrating the larger mass distributions of the electrospray beam. 

Cations species within the spectra are denoted as n = 0, n = 1, and n = 2 for EMIM+, 

[EMIM-NTf2] EMIM+, and [EMIM-NTf2]2 EMIM+, respectively. Note that the magnetic 

field had no significant effect on the neat IL minimum flowrate. Mass fractions for the 

three propellants, under both magnetic field conditions, were also calculated using the 

method outline in Section 6.4.3 and are provided in Figure G.3.  

The conclusion of the experiment was that by applying a magnetic field to the CES and 

reducing its minimum operable flowrate the magnitude of the ion peak present change, as 

seen in Figure G.2. The ratio of n = 1 to n = 0 is reduced by 33- to 50-percent depending 

on the solution, which is significant even with a 20-percent uncertainty in intensity axis 

(see Section 6.4.1. for description regarding spectra comparison and repeatability). This is 
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interpreted as a shift in the average m/q from heavier to lighter mass species, or specifically 

the mass fraction transported by the ions was increased by the application of a magnetic 

field, Figure G.3. The cause of the change in ion peak intensities was most likely the act of 

operating the CES at lower flowrates, and not a direct influence of the applied magnetic 

field as literature shows a similar correlation between emitted ions species/intensity and 

flowrate. Also, despite the dramatic change in ion peak intensity, the mass fraction on the 

ions relative to that of the droplet population was still insignificant; however, the current 

transported by the ion species would be significantly higher (as illustrated by the summed 

TOF mass spectra of  Figure G.1. and Figure G.2.). The combined observations illustrate 

that the CES still operated in a mixed ion/droplet mode even at the minimum operable 

flowrate. 

Figure G.1. Mass spectra neat IL emitted from the CES at its minimum flowrate under zero 
and 200-Gauss applied magnetic fields. The spectra in the low-mass plot (0-3000 amu/e) have 

been shifted on the m/q axis by arbitrarily adding 50 amu/e to the blue curve to ease 
comparison.  
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Figure G.2. (a) Mass spectra of ILFF-10 propellant emitted from the CES at its minimum 
flowrate under zero and 200-Gauss applied magnetic fields. (b) Mass spectra of ILFF-30 

propellant emitted from the CES at its minimum flowrate under zero and 200-Gauss applied 
magnetic fields. The spectra in the low-mass plot (0-3000 amu/e) have been shifted on the 

m/q axis by arbitrarily adding 50 amu/e to the green curves to ease comparison. 
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Figure G.3. Mass fractions of all the neat IL, ILFF-10, and ILFF-30 electrosprays running at 
their respective minimum Q, with zero and 200-Gauss magnetic fields applied to the source. 
The left axis is on a log scale to better illustrate the magnitude of the mass fraction for the 

ion species. 
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SIMION Simulations of TOF-MS Extraction 

Region 

This analysis was performed by B.D. Prince as part of a manuscript submitted to the 

50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit which also 

included data from Chapter 7.[139] An email providing me permission to reprint this 

analysis is shown in Figure H.1.  

Figure H.1. Email from Benjamin D. Prince giving permission to reprint the SIMION 
analysis. 

Two-dimensional SIMION simulations were performed with a set of electrodes 

generated to reproduce the extraction region of the TOF mass spectrometer as shown in 

3.6.[140] This region consisted of two 76.2-mm-long plates with an aperture of 6 mm 

located in the center of VA2.  The two plates were separated from one another by 76.2 mm. 
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VA1 was held at +978 V while VA2 was assigned +750 V.  A plate perpendicular to the 

beam-axis direction was placed after the repeller plates and held at the VA1 potential. 

Along the flight tube axis (orthogonal to beam axis), the extracted ions encounter an Einzel 

lens and deflector before entering a 1-m-long grounded tube acting as the TOF chamber. 

Ion distributions were placed at three locations along the beam axis: 0 mm, 20 mm, and 43 

mm from the entrance to the extraction region.  At these three positions, multiple distances, 

ranging from 2 to 72 mm, from VA1 were examined.  2500 ions were flown at each 

condition.  For each 2500-ion simulation at a given initial position, a single mass was 

assigned a single positive charge with a uniform kinetic energy distribution ranging from 

0.03 to 50 eV (i.e. ~750eV –800 eV) along the beam-axis direction. The simulated ions 

had a cone distributed with a half angle of 30 degrees. This cone distribution simulates a 

small amount of transverse velocity that would be expected in the generally-broad, ion 

plume of electrospray thrusters. An annotated schematic of the SIMION potential array is 

provided in Figure H.2. 

Figure H.2. SIMION potential array with the three locations at which the 25000-ion cone 
distributions with m/q of 502 amu/e were generated. 
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The flight time, kinetic energy, and number of ions reaching the back wall located 1 m 

along the TOF axis were recorded for masses at 15, 111, 502, and 50,000 amu. The key 

findings are presented in Figure H.3. In Figure H.3.a), the results from the m/q = 502 amu/e 

simulations are presented at two locations along the beam axis, at the entrance to the 

extraction region (0 mm) and at the center of the extraction region (43 mm). The x-axis 

encompasses points along the TOF axis measured relative to the VA1 position.  In the top 

trace, the percentage of ions detected at the back wall to ions flown is presented. At 0 mm, 

ions could only be detected if they were within 40 mm (approximately halfway between 

VA1 and VA2) whereas the ions are detected at all distances when the ions are pulsed 

while in the center of the beam-axis within the extraction region. However, at distances 

where ions are detected, the percentage of ions reaching the back wall of the TOF chamber 

is essentially similar at both positions along the beam axis. Nearly identical kinetic energies 

are observed for fixed distance from VA1 regardless of the position along the beam axis. 

Notably, the kinetic energy (KE) of the ions measured as they impact the wall ranges from 

1010 eV to 761 eV over the entire distance from VA1 where ions have successfully 

transmitted along the TOF axis. The bottom trace of Figure H.3.a) presents the average 

flight time of the ions beginning at these locations. The standard deviation of the flight 

time taken from the 43-mm data is also presented.  In contrast to the significant standard 

deviations observed in the flight time, the standard deviation of the average kinetic energy 

(not shown) was found to be typically 4-9 eV. The difference in flight time over 1 m for a 

502 amu mass at 1000 eV and 800 eV is approximately 6 µs yet the average value found 

at near and far distances from VA1 appears to be contrary to what is expected from their 

respective kinetic energies. This discrepancy results from the different trajectories taken 
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by the species that make it through the VA2 aperture. At distances close to VA1 (i.e. 2-22 

mm), successfully extracted trajectories typically first move towards VA2 and then are 

repelled, whereas the ions at higher distance (greater than 22 mm from VA1) simply curve 

through the aperture, shortening their time spent in the pulsing acceleration region. In 

Figure H.3.b) the percent ion count and average kinetic energy as a function of the distance 

from VA1 are presented. The kinetic energy still exhibits a distance effect, as expected, 

and is independent of mass. The percentage of ions that reach the back wall is also found 

to be invariant of mass. 

Figure H.3. Results from SIMION simulation of the TOF extraction region illustrating the 
percentage-of-ions that enter the flight chamber and average kinetic energy of ions versus a) 

position in extraction region and b) m/q of the ions. Also in (a) average flight time of ions 
versus position in extraction region (bottom).  

Using the specific m/q values from the high-resolution data, their respective intensity 

ratios and the findings from the SIMION simulations, the needle TOF mass spectrum is 
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simulated in the flight time domain and then converted to the mass domain. All masses 

below 83 amu were modeled with kinetic energy line-widths equal to the pulsing potential 

(+240 eV) and centered at the VA1 voltage suggesting these species are detected at all 

positions in the extraction region.  As the mass increases the required kinetic energy line-

width necessary to generate the proper mass and flight time line-widths becomes smaller 

and smaller, although the average kinetic energy appears to still be close to the value of 

VA1. The product of this simulation is a qualitatively accurate intensity versus time-of-

flight mass spectrum. 
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Discussion on Summed Mass Spectrum 

The summed mass TOF mass spectra were the primary data sets of Chapter 6. The 

determining factor on whether individual spectra were collected at each energy defect was 

based on the number of ion peaks that could be observed in a specific energy-defect 

spectrum. Without two or more peaks, the m/q mass axis could not be determined. As such 

the number of spectra that should be used to create a single summed TOF mass spectrum 

differed depending on the propellant, and the propellant flowrate. However, to provide a 

better comparison between all propellants and flowrates only a set number of energy-defect 

spectra was summed to create a single summed mass spectrum. This appendix will go 

through the process of creating one of these summed mass spectra and illustrate the impact 

of omitting energy-defect spectra. 

Section 6.3.1. described the procedure to collect individual spectra at each energy-

defect of a specific electrospray. Figure I.1. presents an example of the spectra from an 

ILFF-40 electrospray collected at energy-defects of 50 eV to 450 eV. Ion species peak 

intensities varied across the spectra collected at each energy defect, and in some case the 

peaks did not appear. The distributions that existed in the large m/q range of the individual 

spectra also differed in intensity and m
q  (due to the variation in charge, as described in 

Section  6.4.2.) depending on the energy-defect of the particles collected in the spectrum. 
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Figure I.1 a) low m/q range and b) high m/q range of the individual energy-defect spectra 
that comprise a single summed mass spectrum. Inset plots of a) magnify specific ranges of 

the m/q scale to present heavier ion species. The spectra of b) have been shifted on the 
intensity axis by artificially adding arbitrary dc-offsets to all but the 850-eV curve. Note for 

the summed mass spectra examined in this research the 400- and 450-eV spectra are 
omitted. 
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A summed mass spectrum was created by first truncating each individual spectrum 

such that the m/q range of all spectra were equal in length. The spectra were then summed 

to produce the summed mass spectrum. The summed mass spectra used analyzed in 

Chapter 6 used seven spectra to produce each, and therefore omitted data in two ways. 

First, the truncation removed data at m/q greater than 867700 amu/e; as Figure I.1. 

illustrates, this omitted data from a range of over 270,000 amu/e from the lowest energy-

defect spectrum. Luckily, the individual spectra did not appear to measure any significant 

populations at this range. Second, data within the higher energy-defect spectra (those 

greater than 350 eV) was omitted. This was done for accurate comparison between summed 

mass spectra for all propellants and flowrates, i.e. only examining particles in the 

electrosprays that had maximum energy-defects of 350 eV. As Figure I.1. illustrates, 

multiple ion species existed in spectra that were collected for energy defects of 400- and 

450-eV. This meant that it was possible that some of the summed mass spectra of Chapter

6 had higher relative intensities of ions if the entire energy range of the electrospray was 

collected. The lower energy of these particles would impact the efficiency of the 

electrospray, specifically lowering V .  The comparison of the summed mass spectrum 

created using all the individual energy-defect spectra in Figure I.1. and the summed mass 

spectrum created after omitting the 400- and 450-eV spectra is presented in Figure I.2. 
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Figure I.2. Summed TOF mass spectra of an ILFF-40 electrospray operating at 0.54 nl/s. 
The red spectrum was created through the sum of 7 spectra collected at energy defects 

between 50 eV and 350 eV at 50 eV intervals. The green spectrum was created through the 
sum of 9 spectra collected at energy defects between 50 eV and 450 eV at 50 eV intervals. 

The red spectrum has been shifted along the m/q axis by artificially adding 50 m/q; this was 
done for clarity. 
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Summed TOF Mass Spectra for ILFF propellants 

This appendix presents summed TOF mass spectra from the mass spectrometer 

experiment. The summed mass spectra from magnetic-field-free ILFF-10, ILFF-20, and 

ILFF-30 electrosprays are given in Figure J.1., Figure J.2., and Figure J.3, respectively. 

The summed mass spectra from magnetically-stressed ILFF-10, ILFF-20, and ILFF-30 

electrosprays are given in Figure J.4., Figure J.5., and Figure J.6., respectively. The 

summed mass spectra from magnetic-field-free and magnetically-stressed ILFF-40 

electrosprays are given in Figure J.7. Some of the spectra are also included in figures of 

Chapter 6. 
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Figure J.1. Full range of summed TOF mass spectra for CES running the ILFF-10 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). No magnetic field applied 

to the source. 
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Figure J.2. Full range of summed TOF mass spectra for CES running the ILFF-20 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). No magnetic field applied 

to the source. 
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. 

Figure J.3. Full range of summed TOF mass spectra for CES running the ILFF-30 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). No magnetic field applied 

to the source. 
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Figure J.4. Full range of summed TOF mass spectra for CES running the ILFF-10 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). 200-Gauss magnetic field 

applied to the source. 
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Figure J.5. Full range of summed TOF mass spectra for CES running the ILFF-20 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). 200-Gauss magnetic field 

applied to the source. 



www.manaraa.com

289 

Figure J.6. Full range of summed TOF mass spectra for CES running the ILFF-30 
propellant. a) Low m/q range (ions); b) High m/q range (droplets). 200-Gauss magnetic field 

applied to the source. 
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Figure J.7. Full range of summed TOF mass spectra for CES running the ILFF-40 
propellant with and without a 200-Gauss magnetic field. a) Low m/q range (ions); b) High 

m/q range (droplets). 
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VSM Data for NJ39074 ILFF 

# 
magnets 

B-field at 
face (Gauss) M (emu/g) 

B-field 1.54 
mm from 
face (Gauss) 

M at 1.54 
mm (emu/g) 

wavelength 
(m) 

wavelength 
(mm) 

1 333.9 45.04543596 255.5 37.00034851 0.00236136 2.361360391 
2 520.5 52.82991092 426.4 49.98206436 0.001990265 1.990265211 
3 690.4 55.6177362 578.2 54.01219586 0.001776408 1.776407591 
4 802.4 56.67249148 675.4 55.44199124 0.001654084 1.65408449 
5 894.2 57.2937296 755.9 56.28281061 0.001576453 1.576453139 
6 967.5 57.68435489 820.7 56.8105557 0.001524943 1.524943155 

H (A/m) M (A/m) 
H at 
1.54mm 
(A/m) 

M at 
1.54mm 
(A/m) 

wavelength 
(m) 

wavelength 
(mm) 

0.8*wav
elength 
(nm) 

1 26570.91775 220722.6362 20332.04398 181301.7077 0.003373372 3.373371987 3.036035 
2 41420.07394 258866.5635 33931.83387 244912.1154 0.002843236 2.843236016 2.558912 
3 54940.28636 272526.9074 46011.69405 264659.7597 0.002537725 2.53772513 2.03018 
4 63852.96317 277695.2082 53746.62428 271665.7571 0.002362978 2.362977843 1.890382 
5 71158.17506 280739.275 60152.61074 275785.772 0.002252076 2.252075913 1.801661 
6 76991.20372 282653.3389 65309.2309 278371.7229 0.00217849 2.178490222 1.742792 

NJ397074 Sample 
weight, g Solids % Pure Fe2O3 emu emu/g 

0.00831 20.6 0.00171186 0.10993 64.22  
Time Stamp 
(sec) 

Temperature 
(K) 

Magnetic 
Field (Oe) 

Moment 
(emu) 

M. Std. Err. 
(emu) emu/g H (A/m) M (A/m) 

523269.75 297.8821411 0.043 -0.013325745 3.90E-06 -1.60358 3.421831 -2910.5 
523295.39 297.9080505 923.0855 0.054269902 1.18E-05 6.530674 73456.81 11853.17 
523299.07 297.9125977 1753.9535 0.102262102 4.15E-05 12.30591 139575.2 22335.22 
523299.705 297.9134979 1896.1785 0.103538864 3.19E-05 12.45955 150893.1 22614.08 
523300.97 297.913971 2159.4795 0.103974556 3.45E-05 12.51198 171845.9 22709.24 
523302.19 297.9151612 2413.976 0.104392877 2.95E-05 12.56232 192098.1 22800.61 
523303.315 297.916092 2664.357 0.104755773 3.13E-05 12.60599 212022.8 22879.87 
523304.485 297.917389 2917.7035 0.105063233 3.07E-05 12.64299 232183.5 22947.02 
523305.505 297.9194489 3124.6295 0.105318013 2.67E-05 12.67365 248650.1 23002.67 
523306.53 297.9208069 3311.456 0.105544702 2.79E-05 12.70093 263517.3 23052.18 
523308.46 297.9216003 3692.576 0.105955814 2.48E-05 12.7504 293845.9 23141.97 
523309.115 297.9226685 3821.785 0.106166896 2.20E-05 12.7758 304128 23188.08 
523310.195 297.9237366 4043.5465 0.106313264 2.75E-05 12.79341 321775.2 23220.04 
523311.19 297.9240418 4222.5245 0.10646425 2.67E-05 12.81158 336017.8 23253.02 
523312.175 297.9249878 4401.216 0.106638154 2.21E-05 12.83251 350237.6 23291 
523313.19 297.9256592 4595.4135 0.106733511 1.50E-05 12.84398 365691.4 23311.83 
523314.315 297.9272766 4821.5775 0.106886056 1.99E-05 12.86234 383688.9 23345.15 
523315.465 297.9292908 5053.293 0.10697149 1.73E-05 12.87262 402128.3 23363.81 
523317.43 297.9310608 5412.3945 0.107189207 1.65E-05 12.89882 430704.7 23411.36 
523318.095 297.9319153 5535.4795 0.107287021 1.61E-05 12.91059 440499.5 23432.72 
523319.26 297.9331818 5748.1475 0.107388812 2.03E-05 12.92284 457423 23454.96 
523320.29 297.9340821 5938.037 0.107465097 1.97E-05 12.93202 472534 23471.62 
523322.215 297.9367981 6283.932 0.10755187 1.81E-05 12.94246 500059.4 23490.57 
523323.795 297.938324 6596.0415 0.107723826 2.08E-05 12.96316 524896.3 23528.13 
523324.32 297.9386444 6696.7275 0.10778408 1.97E-05 12.97041 532908.6 23541.29 
523325.205 297.938797 6852.2555 0.107845867 2.05E-05 12.97784 545285.2 23554.78 
523327.13 297.9407349 7215.0925 0.107883884 1.88E-05 12.98242 574158.8 23563.09 
523327.765 297.9412995 7337.41 0.107952339 2.02E-05 12.99065 583892.5 23578.04 
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523328.83 297.9419403 7527.011 0.108056143 2.15E-05 13.00315 598980.5 23600.71 
523329.93 297.9427338 7716.8025 0.108157099 1.85E-05 13.01529 614083.6 23622.76 
523331.08 297.9441071 7939.519 0.10819501 1.80E-05 13.01986 631806.8 23631.04 
523332.27 297.9454346 8167.883 0.108267266 1.81E-05 13.02855 649979.5 23646.82 
523333.485 297.9466553 8390.694 0.108330968 1.83E-05 13.03622 667710.2 23660.73 
523334.61 297.9477845 8597.331 0.108411864 1.76E-05 13.04595 684153.9 23678.4 
523335.7 297.9487153 8804.5425 0.108424937 2.01E-05 13.04753 700643.2 23681.26 
523337.845 297.949997 9216.285 0.108501344 1.54E-05 13.05672 733408.7 23697.95 
523338.635 297.9508209 9356.116 0.108554647 1.87E-05 13.06313 744536.1 23709.59 
523339.745 297.951767 9568.3055 0.108582942 2.09E-05 13.06654 761421.6 23715.77 
523340.87 297.952591 9774.2725 0.108656772 2.00E-05 13.07542 777811.9 23731.89 
523342.135 297.9540101 9997.178 0.108714389 1.98E-05 13.08236 795550.1 23744.48 
523343.275 297.955246 10204.293 0.10871216 1.85E-05 13.08209 812031.8 23743.99 
523344.385 297.9556885 10411.3125 0.10877195 2.19E-05 13.08928 828505.9 23757.05 
523345.515 297.9561005 10623.307 0.108816052 1.74E-05 13.09459 845375.9 23766.68 
523346.56 297.9575196 10830.1345 0.108841975 1.75E-05 13.09771 861834.7 23772.34 
523347.695 297.958725 11036.963 0.108869847 1.79E-05 13.10106 878293.6 23778.43 
523348.9 297.9593353 11265.613 0.108930706 1.94E-05 13.10839 896489 23791.72 
523350.065 297.9600067 11489.0955 0.108960406 2.20E-05 13.11196 914273.2 23798.21 
523351.19 297.9598541 11679.078 0.109013796 2.29E-05 13.11839 929391.5 23809.87 
523352.36 297.9604187 11903.803 0.108983434 1.90E-05 13.11473 947274.5 23803.24 
523353.43 297.9613953 12111.6845 0.109064562 1.82E-05 13.1245 963817.2 23820.96 
523354.35 297.9620514 12284.2485 0.109093758 2.06E-05 13.12801 977549.4 23827.34 
523355.39 297.9633331 12473.849 0.109131406 2.03E-05 13.13254 992637.4 23835.56 
523356.445 297.9639587 12669.096 0.10915039 1.80E-05 13.13482 1008175 23839.71 
523357.465 297.9645538 12875.922 0.109216085 2.34E-05 13.14273 1024633 23854.05 
523358.575 297.9656372 13083.801 0.109172779 2.53E-05 13.13752 1041176 23844.6 
523359.765 297.9660187 13291.2985 0.109197376 2.38E-05 13.14048 1057688 23849.97 
523360.96 297.9660187 13498.0305 0.109268751 2.30E-05 13.14907 1074139 23865.56 
523362.11 297.9661255 13710.026 0.109283818 2.12E-05 13.15088 1091009 23868.85 
523363.215 297.9665528 13917.044 0.109331387 1.80E-05 13.1566 1107483 23879.24 
523365.14 297.9678955 14297.396 0.10925557 1.88E-05 13.14748 1137751 23862.68 
523365.855 297.9676819 14421.053 0.109392076 2.46E-05 13.16391 1147591 23892.49 
523367.105 297.96875 14661.666 0.109456261 1.72E-05 13.17163 1166738 23906.51 
523368.23 297.9696655 14868.493 0.10943374 1.78E-05 13.16892 1183197 23901.59 
523370.175 297.9702148 15222.043 0.109435322 1.48E-05 13.16911 1211332 23901.94 
523370.83 297.9707489 15356.992 0.109526671 1.32E-05 13.1801 1222071 23921.89 
523372.025 297.9711762 15596.7425 0.109552079 1.21E-05 13.18316 1241149 23927.44 
523373.135 297.9714203 15786.342 0.109511506 1.73E-05 13.17828 1256237 23918.58 
523374.15 297.971405 15960.2445 0.109544106 2.01E-05 13.1822 1270076 23925.7 
523375.305 297.9722443 16189.946 0.109573854 1.79E-05 13.18578 1288355 23932.2 
523376.35 297.9729309 16396.6785 0.109591844 1.77E-05 13.18795 1304806 23936.12 
523378.335 297.9734802 16777.8855 0.109628716 1.26E-05 13.19238 1335142 23944.18 
523380.04 297.9740754 17057.261 0.109632239 1.41E-05 13.19281 1357374 23944.95 
523380.785 297.9744873 17196.421 0.109693973 1.70E-05 13.20024 1368448 23958.43 
523382.035 297.9751129 17437.2255 0.109701591 1.92E-05 13.20115 1387610 23960.09 
523383.12 297.9752045 17644.531 0.109702268 2.16E-05 13.20124 1404107 23960.24 
523384.205 297.9756012 17857.578 0.109760147 1.57E-05 13.2082 1421061 23972.88 
523385.305 297.975769 18064.788 0.109774597 1.11E-05 13.20994 1437550 23976.04 
523386.42 297.9757996 18271.998 0.109795986 4.78E-06 13.21251 1454039 23980.71 
523387.685 297.9770508 18512.803 0.109793629 1.36E-05 13.21223 1473202 23980.2 
523388.86 297.9773407 18737.1445 0.109840221 1.14E-05 13.21784 1491055 23990.37 
523390.005 297.9775543 18949.33 0.109864389 1.13E-05 13.22074 1507940 23995.65 
523391.26 297.9784088 19172.43 0.109873879 1.59E-05 13.22189 1525694 23997.72 
523392.54 297.9786682 19413.83 0.109903222 8.85E-06 13.22542 1544904 24004.13 
523393.705 297.9792938 19625.4745 0.109895998 8.60E-06 13.22455 1561746 24002.56 
523394.85 297.9799652 19789.012 0.109921906 1.09E-05 13.22767 1574760 24008.21 
523396.035 297.9803009 19889.921 0.109935704 1.18E-05 13.22933 1582790 24011.23 
523397.085 297.9810333 19924.1115 0.109936637 1.35E-05 13.22944 1585510 24011.43 
523398.11 297.9814148 19934.883 0.109922609 9.69E-06 13.22775 1586368 24008.37 
523407.12 297.9842835 20000.2175 0.10993107 8.01E-06 13.22877 1591567 24010.22 
523417.3 297.9882813 19872.2725 0.109920051 1.73E-05 13.22744 1581385 24007.81 
523417.985 297.9888001 19716.3885 0.109915141 1.23E-05 13.22685 1568980 24006.74 
523420.135 297.9898376 19211.3495 0.109900344 1.18E-05 13.22507 1528791 24003.5 
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523420.615 297.9901123 19088.173 0.10987496 1.32E-05 13.22202 1518989 23997.96 
523421.56 297.990326 18890.246 0.109867095 9.77E-06 13.22107 1503238 23996.24 
523422.695 297.9903717 18658.0575 0.109835394 1.10E-05 13.21726 1484761 23989.32 
523423.835 297.9904022 18431.6135 0.1097829 8.94E-06 13.21094 1466741 23977.85 
523425.015 297.9905396 18209.5695 0.109782532 6.69E-06 13.21089 1449071 23977.77 
523426.205 297.9906006 17972.786 0.109747263 1.09E-05 13.20665 1430229 23970.07 
523427.26 297.9905396 17751.317 0.109733456 1.51E-05 13.20499 1412605 23967.05 
523429.21 297.9909668 17381.785 0.109704322 1.17E-05 13.20148 1383199 23960.69 
523429.81 297.9911499 17273.0595 0.109694109 8.33E-06 13.20025 1374546 23958.46 
523430.735 297.9913788 17095.2325 0.109704739 1.06E-05 13.20153 1360395 23960.78 
523431.71 297.9917145 16900.5615 0.109640713 1.18E-05 13.19383 1344904 23946.8 
523432.895 297.9923706 16667.129 0.109624734 1.16E-05 13.19191 1326328 23943.31 
523434.115 297.9924927 16456.3775 0.109624223 9.80E-06 13.19184 1309557 23943.2 
523435.265 297.9925385 16228.303 0.10959563 1.27E-05 13.1884 1291407 23936.95 
523436.33 297.9932099 16012.0975 0.109572794 1.30E-05 13.18566 1274202 23931.96 
523438.395 297.9933472 15630.4115 0.109531231 1.01E-05 13.18065 1243829 23922.89 
523440.025 297.9942627 15328.545 0.109515207 9.21E-06 13.17873 1219807 23919.39 
523441.685 297.9950256 15011.078 0.109464266 1.35E-05 13.1726 1194544 23908.26 
523442.345 297.9949493 14885.5085 0.109454802 1.04E-05 13.17146 1184551 23906.19 
523443.445 297.9949799 14657.913 0.109431876 1.21E-05 13.1687 1166440 23901.19 
523444.585 297.9954529 14447.7405 0.109411129 9.36E-06 13.1662 1149715 23896.65 
523446.605 297.9952087 14072.325 0.109357247 1.22E-05 13.15972 1119840 23884.89 
523447.23 297.995285 13952.3045 0.10934342 1.20E-05 13.15805 1110289 23881.87 
523448.27 297.9949951 13741.7445 0.109308379 1.09E-05 13.15384 1093533 23874.21 
523449.41 297.9949188 13525.1545 0.109279993 9.57E-06 13.15042 1076298 23868.01 
523450.525 297.9957123 13332.3955 0.109258657 6.04E-06 13.14785 1060958 23863.35 
523451.5 297.9960632 13156.5775 0.109227181 9.56E-06 13.14407 1046967 23856.48 
523453.61 297.9966125 12747.709 0.109175861 1.23E-05 13.13789 1014430 23845.27 
523454.36 297.9970398 12610.8445 0.109156299 8.11E-06 13.13554 1003539 23841 
523455.41 297.997467 12399.7095 0.109119602 1.10E-05 13.13112 986737.5 23832.98 
523456.345 297.9971924 12223.6045 0.109093827 1.12E-05 13.12802 972723.5 23827.35 
523457.57 297.9970856 11979.2595 0.109029604 8.91E-06 13.12029 953279.2 23813.33 
523458.905 297.9972229 11728.6935 0.108996565 9.73E-06 13.11631 933339.8 23806.11 
523461.005 297.9975586 11341.6455 0.108964638 1.14E-05 13.11247 902539.5 23799.14 
523461.735 297.9974366 11199.325 0.108938126 1.07E-05 13.10928 891214 23793.35 
523462.735 297.9976197 10988.2855 0.108868834 1.37E-05 13.10094 874420 23778.21 
523463.84 297.9983978 10777.5335 0.10883869 9.97E-06 13.09732 857648.9 23771.63 
523465.125 297.9985046 10566.687 0.108800967 1.02E-05 13.09278 840870.2 23763.39 
523466.2 297.9983368 10350.2895 0.108750166 1.19E-05 13.08666 823649.9 23752.29 
523467.18 297.9981843 10156.9565 0.108714976 1.26E-05 13.08243 808264.9 23744.61 
523468.235 297.9980164 9963.1445 0.108693407 1.10E-05 13.07983 792841.8 23739.9 
523469.445 297.9982453 9734.685 0.108645334 8.73E-06 13.07405 774661.6 23729.4 
523470.61 297.998291 9524.5065 0.108589065 1.39E-05 13.06728 757936.1 23717.11 
523472.72 297.9993286 9113.818 0.108517621 1.16E-05 13.05868 725254.6 23701.5 
523474.315 297.9986267 8811.4735 0.108418319 1.07E-05 13.04673 701194.8 23679.81 
523474.995 297.9998322 8675.0865 0.108375735 1.18E-05 13.0416 690341.4 23670.51 
523476.095 298.000351 8464.333 0.108321778 1.39E-05 13.03511 673570.2 23658.73 
523477.17 297.9995423 8264.5885 0.108263204 9.61E-06 13.02806 657675.1 23645.93 
523478.215 297.9997254 8070.49 0.108214865 9.33E-06 13.02225 642229.2 23635.38 
523479.125 298.0000763 7893.5225 0.10815835 1.08E-05 13.01545 628146.6 23623.03 
523480.16 297.9998932 7699.5195 0.108101515 1.37E-05 13.00861 612708.3 23610.62 
523481.415 298.0004578 7454.5975 0.107984794 1.30E-05 12.99456 593218 23585.13 
523482.805 298.0016632 7169.095 0.107928505 8.96E-06 12.98779 570498.5 23572.83 
523484.16 298.0022278 6922.9295 0.107853323 1.07E-05 12.97874 550909.2 23556.41 
523485.34 298.0022431 6694.1845 0.107785834 1.33E-05 12.97062 532706.3 23541.67 
523487.415 298.00177 6299.667 0.107625621 1.30E-05 12.95134 501311.6 23506.68 
523488.09 298.0019531 6179.2635 0.107533853 1.35E-05 12.9403 491730.2 23486.64 
523489.215 298.0021057 5967.7445 0.10746642 6.90E-06 12.93218 474898 23471.91 
523490.345 298.0020905 5750.2925 0.107395723 1.21E-05 12.92367 457593.7 23456.47 
523491.345 298.0022888 5554.7575 0.107286689 9.90E-06 12.91055 442033.6 23432.65 
523492.325 298.0024719 5376.7365 0.107178681 1.35E-05 12.89755 427867.1 23409.06 
523493.415 298.0024262 5181.6775 0.107074256 1.40E-05 12.88499 412344.8 23386.25 
523494.42 298.0023804 4986.429 0.10697841 1.33E-05 12.87345 396807.4 23365.32 
523495.54 298.0027314 4774.5275 0.106874733 1.05E-05 12.86098 379944.8 23342.68 
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523496.69 298.0027008 4544.6315 0.106742486 1.57E-05 12.84506 361650.3 23313.79 
523497.735 298.0031891 4342.5875 0.106614077 1.86E-05 12.82961 345572.1 23285.75 
523498.88 298.0041046 4129.3445 0.106325188 1.10E-05 12.79485 328602.8 23222.65 
523500.015 298.0036621 3899.3525 0.106174929 1.49E-05 12.77677 310300.6 23189.83 
523502.115 298.0036926 3467.3155 0.105818281 1.35E-05 12.73385 275920.2 23111.93 
523502.885 298.0037995 3328.726 0.105622034 1.61E-05 12.71023 264891.6 23069.07 
523504.135 298.0039521 3114.333 0.105402177 1.83E-05 12.68378 247830.7 23021.05 
523505.22 298.0041962 2894.676 0.105149625 1.45E-05 12.65338 230351 22965.89 
523506.16 298.0042267 2698.182 0.104890272 1.88E-05 12.62217 214714.5 22909.25 
523507.175 298.003952 2517.6705 0.104587827 1.97E-05 12.58578 200349.9 22843.19 
523508.235 298.0048065 2302.6085 0.104257345 2.19E-05 12.54601 183235.8 22771.01 
523509.235 298.0057678 2105.1565 0.103888916 2.15E-05 12.50167 167523 22690.54 
523510.29 298.0062714 1906.268 0.103453504 2.38E-05 12.44928 151696 22595.44 
523511.21 298.006424 1725.183 0.102953278 2.80E-05 12.38908 137285.7 22486.19 
523512.165 298.0056763 1543.906 0.102364076 2.90E-05 12.31818 122860.1 22357.5 
523513.245 298.0058441 1326.4495 0.10164297 3.94E-05 12.2314 105555.5 22200 
523514.22 298.0064087 1143.5465 0.100739679 4.69E-05 12.12271 91000.54 22002.71 
523515.29 298.006546 925.037 0.099563846 6.34E-05 11.98121 73612.11 21745.89 
523516.29 298.0066833 717.63 0.09793227 8.79E-05 11.78487 57107.18 21389.54 
523517.235 298.0068665 550.6145 0.095435198 0.000144568 11.48438 43816.51 20844.15 
523518.195 298.0074616 365.987 0.090831925 0.000301125 10.93044 29124.32 19838.74 
523519.18 298.0076752 163.4605 0.077598916 0.001153762 9.338016 13007.77 16948.5 
523520.21 298.0072022 -56.58 -0.002337748 0.007523463 -0.28132 -4502.49 -510.591 
523524.345 298.0078125 -860.462 -0.054177294 6.32E-06 -6.51953 -68473.4 -11832.9 
523527.95 298.0075989 -1561.356 -0.101502463 3.62E-05 -12.2145 -124249 -22169.3 
523528.535 298.0077668 -1660.896 -0.102235198 2.85E-05 -12.3027 -132170 -22329.3 
523529.48 298.0083466 -1814.704 -0.102803418 2.65E-05 -12.371 -144410 -22453.5 
523530.305 298.0087585 -1967.3635 -0.103285717 2.21E-05 -12.4291 -156558 -22558.8 
523531.155 298.0081482 -2134.2835 -0.103708756 1.73E-05 -12.48 -169841 -22651.2 
523532.14 298.0075378 -2300.6285 -0.10408023 2.05E-05 -12.5247 -183078 -22732.3 
523533.125 298.008255 -2465.539 -0.10438687 1.70E-05 -12.5616 -196201 -22799.3 
523534.14 298.0083619 -2645.285 -0.104680408 1.32E-05 -12.5969 -210505 -22863.4 
523535.14 298.0084992 -2823.3085 -0.104938861 1.72E-05 -12.628 -224672 -22919.9 
523536.355 298.0090943 -3033.012 -0.105168044 1.35E-05 -12.6556 -241359 -22969.9 
523537.3 298.0089417 -3196.9645 -0.10538589 1.28E-05 -12.6818 -254406 -23017.5 
523538.05 298.008606 -3346.5605 -0.105606534 9.58E-06 -12.7084 -266311 -23065.7 
523539 298.0089417 -3529.082 -0.105778584 1.42E-05 -12.7291 -280835 -23103.3 
523539.975 298.009613 -3696.479 -0.105954507 1.71E-05 -12.7502 -294156 -23141.7 
523541 298.009018 -3863.591 -0.106107919 1.79E-05 -12.7687 -307455 -23175.2 
523543.195 298.0083618 -4272.1805 -0.106410165 1.84E-05 -12.8051 -339969 -23241.2 
523543.94 298.008667 -4408.568 -0.106545783 1.58E-05 -12.8214 -350823 -23270.8 
523545.135 298.008606 -4643.8225 -0.106661035 1.33E-05 -12.8353 -369544 -23296 
523546.4 298.0083313 -4862.521 -0.106778963 1.08E-05 -12.8495 -386947 -23321.8 
523547.41 298.0084992 -5049.3485 -0.106897289 1.35E-05 -12.8637 -401814 -23347.6 
523548.305 298.0086975 -5220.3835 -0.10700502 6.92E-06 -12.8767 -415425 -23371.1 
523549.445 298.0086823 -5408.3585 -0.107105338 1.21E-05 -12.8887 -430383 -23393 
523550.41 298.0086823 -5579.2965 -0.107201224 8.66E-06 -12.9003 -443986 -23414 
523551.36 298.0089722 -5771.292 -0.107285931 9.31E-06 -12.9105 -459265 -23432.5 
523552.42 298.0088959 -5975.538 -0.10737415 1.32E-05 -12.9211 -475518 -23451.8 
523553.5 298.0091706 -6164.469 -0.107457837 1.06E-05 -12.9311 -490553 -23470 
523554.655 298.0093232 -6369.7665 -0.107536177 9.87E-06 -12.9406 -506890 -23487.1 
523555.625 298.0095826 -6541.184 -0.107614259 9.98E-06 -12.95 -520531 -23504.2 
523556.64 298.0105286 -6729.063 -0.107697506 9.05E-06 -12.96 -535482 -23522.4 
523557.7 298.0104676 -6934.169 -0.10775494 6.86E-06 -12.9669 -551804 -23534.9 
523558.655 298.0101624 -7106.3515 -0.107828936 1.49E-05 -12.9758 -565505 -23551.1 
523559.625 298.010315 -7295.5695 -0.107869239 1.26E-05 -12.9807 -580563 -23559.9 
523560.595 298.0101166 -7484.405 -0.107953758 7.45E-06 -12.9908 -595590 -23578.3 
523561.635 298.0100098 -7673.337 -0.107983457 1.49E-05 -12.9944 -610625 -23584.8 
523563.655 298.0101929 -8057.039 -0.10811062 1.18E-05 -13.0097 -641159 -23612.6 
523565.31 298.0097961 -8352.3005 -0.108224755 6.76E-06 -13.0234 -664655 -23637.5 
523565.975 298.0096436 -8468.9725 -0.108267379 1.02E-05 -13.0286 -673939 -23646.8 
523566.975 298.0096131 -8658.095 -0.108322411 1.44E-05 -13.0352 -688989 -23658.9 
523567.96 298.0103607 -8847.408 -0.108375385 1.43E-05 -13.0416 -704054 -23670.4 
523568.97 298.0102539 -9036.53 -0.108408042 9.28E-06 -13.0455 -719104 -23677.6 
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523569.995 298.0092926 -9208.9985 -0.108452992 9.32E-06 -13.0509 -732829 -23687.4 
523571.11 298.0092621 -9415.6365 -0.108495922 8.78E-06 -13.0561 -749273 -23696.8 
523572.155 298.0093689 -9628.2065 -0.108532275 8.06E-06 -13.0604 -766188 -23704.7 
523573.14 298.0092773 -9800.5795 -0.108577986 1.05E-05 -13.0659 -779905 -23714.7 
523574.305 298.0090179 -10006.3565 -0.108614532 1.38E-05 -13.0703 -796281 -23722.7 
523575.385 298.0089722 -10212.8015 -0.108656342 1.21E-05 -13.0754 -812709 -23731.8 
523576.47 298.0086975 -10418.7675 -0.108687773 1.35E-05 -13.0792 -829099 -23738.7 
523577.64 298.0084839 -10647.1295 -0.108765222 8.08E-06 -13.0885 -847272 -23755.6 
523578.835 298.0086517 -10870.1325 -0.108795073 6.37E-06 -13.0921 -865018 -23762.1 
523580.015 298.0087738 -11093.901 -0.108832969 8.59E-06 -13.0966 -882825 -23770.4 
523581.17 298.0090027 -11306.375 -0.108855393 1.19E-05 -13.0993 -899733 -23775.3 
523582.18 298.0090027 -11479.6085 -0.108898057 1.03E-05 -13.1045 -913518 -23784.6 
523583.205 298.0084076 -11669.8795 -0.10893326 1.39E-05 -13.1087 -928660 -23792.3 
523584.345 298.0082398 -11909.8225 -0.108957101 1.21E-05 -13.1116 -947754 -23797.5 
523585.37 298.008667 -12100.3795 -0.108990683 1.29E-05 -13.1156 -962918 -23804.8 
523586.425 298.0087433 -12273.4225 -0.109021198 1.16E-05 -13.1193 -976688 -23811.5 
523587.37 298.0089264 -12462.6395 -0.109044712 1.47E-05 -13.1221 -991745 -23816.6 
523589.285 298.0085449 -12814.469 -0.109097309 1.44E-06 -13.1284 -1019743 -23828.1 
523589.985 298.0081787 -12948.843 -0.109119844 6.03E-06 -13.1311 -1030436 -23833 
523591.1 298.0080719 -13156.1485 -0.109153814 6.55E-06 -13.1352 -1046933 -23840.5 
523592.15 298.0078736 -13345.844 -0.10917984 8.95E-06 -13.1384 -1062029 -23846.1 
523593.285 298.0080872 -13569.709 -0.109197613 3.95E-06 -13.1405 -1079843 -23850 
523594.47 298.0089264 -13799.3175 -0.109221059 1.08E-05 -13.1433 -1098115 -23855.1 
523595.67 298.0085907 -14005.5705 -0.109274994 1.24E-05 -13.1498 -1114528 -23866.9 
523596.9 298.0081635 -14228.7645 -0.109290861 9.61E-06 -13.1517 -1132289 -23870.4 
523598.01 298.0085907 -14441.431 -0.109313801 8.58E-06 -13.1545 -1149213 -23875.4 
523598.99 298.0091401 -14615.2385 -0.109338469 8.27E-06 -13.1575 -1163044 -23880.8 
523600.005 298.0092621 -14805.4115 -0.109360408 1.36E-05 -13.1601 -1178177 -23885.6 
523601 298.009552 -14995.203 -0.109372301 1.09E-05 -13.1615 -1193280 -23888.2 
523601.995 298.0091858 -15185.283 -0.109400774 5.41E-06 -13.165 -1208406 -23894.4 
523603.2 298.0084687 -15431.6375 -0.109423088 1.09E-05 -13.1676 -1228011 -23899.3 
523604.575 298.0084076 -15689.38 -0.109457489 7.09E-06 -13.1718 -1248521 -23906.8 
523605.885 298.0082093 -15929.8965 -0.10948585 9.23E-06 -13.1752 -1267661 -23913 
523606.99 298.0081482 -16137.2025 -0.109487591 1.28E-05 -13.1754 -1284158 -23913.4 
523608.105 298.0085755 -16327.6635 -0.109511761 5.96E-06 -13.1783 -1299314 -23918.6 
523609.185 298.0087586 -16523.293 -0.10953734 1.36E-05 -13.1814 -1314882 -23924.2 
523610.165 298.0084839 -16712.702 -0.109550528 9.59E-06 -13.183 -1329955 -23927.1 
523611.3 298.008667 -16936.7565 -0.10956792 1.04E-05 -13.1851 -1347784 -23930.9 
523612.4 298.0088044 -17144.6365 -0.109591941 8.89E-06 -13.188 -1364327 -23936.1 
523613.455 298.0085755 -17334.905 -0.109597657 3.43E-06 -13.1886 -1379468 -23937.4 
523614.37 298.0084839 -17508.999 -0.109615042 7.47E-06 -13.1907 -1393322 -23941.2 
523615.21 298.0081482 -17665.39 -0.10964332 6.54E-06 -13.1941 -1405767 -23947.4 
523616.36 298.0075073 -17877.673 -0.109654824 5.41E-06 -13.1955 -1422660 -23949.9 
523617.47 298.0072021 -18085.2645 -0.109668225 8.25E-06 -13.1971 -1439180 -23952.8 
523618.39 298.0075378 -18259.2625 -0.109673658 1.04E-05 -13.1978 -1453026 -23954 
523619.4 298.0073242 -18449.7225 -0.109713108 1.05E-05 -13.2025 -1468182 -23962.6 
523620.335 298.0067749 -18623.0525 -0.109710032 1.15E-05 -13.2022 -1481975 -23961.9 
523621.35 298.0069123 -18813.419 -0.109731366 9.60E-06 -13.2047 -1497124 -23966.6 
523622.4 298.0070496 -19004.4555 -0.109742343 1.05E-05 -13.2061 -1512327 -23969 
523623.335 298.0066376 -19178.458 -0.109766891 6.35E-06 -13.209 -1526173 -23974.4 
523624.475 298.0063172 -19402.154 -0.109792521 1.20E-05 -13.2121 -1543974 -23980 
523625.78 298.0056 -19640.6875 -0.109802426 1.06E-05 -13.2133 -1562956 -23982.1 
523626.935 298.0051728 -19797.888 -0.109818032 1.04E-05 -13.2152 -1575466 -23985.5 
523627.915 298.0054474 -19859.761 -0.109816814 1.16E-05 -13.215 -1580390 -23985.3 
523628.955 298.0055237 -19889.157 -0.109825377 1.01E-05 -13.2161 -1582729 -23987.1 
523629.96 298.0051728 -19900.862 -0.109832555 7.51E-06 -13.2169 -1583660 -23988.7 
523638.94 298.0036774 -20000.519 -0.109836993 9.44E-06 -13.2174 -1591591 -23989.7 
523648.765 298.0010681 -19901.469 -0.109808241 1.25E-05 -13.214 -1583709 -23983.4 
523649.235 298.0014801 -19794.8535 -0.10982495 1.28E-05 -13.216 -1575224 -23987 
523650.04 298.0020142 -19625.947 -0.109794759 1.07E-05 -13.2124 -1561783 -23980.4 
523650.94 298.0016785 -19413.669 -0.109784294 1.05E-05 -13.2111 -1544891 -23978.2 
523651.97 298.0015412 -19161.8625 -0.10976149 2.78E-06 -13.2084 -1524853 -23973.2 
523652.96 298.0018616 -18942.5945 -0.109747071 7.04E-06 -13.2066 -1507404 -23970 
523653.915 298.0019989 -18746.87 -0.109728599 7.37E-06 -13.2044 -1491829 -23966 
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523654.91 298.0019989 -18554.879 -0.109715391 9.27E-06 -13.2028 -1476550 -23963.1 
523655.9 298.0014954 -18348.532 -0.10969586 1.36E-05 -13.2005 -1460130 -23958.8 
523656.885 298.0012665 -18145.533 -0.109671861 6.50E-06 -13.1976 -1443976 -23953.6 
523657.895 298.0010987 -17962.921 -0.109660528 1.02E-05 -13.1962 -1429444 -23951.1 
523658.9 298.0010376 -17765.2845 -0.109648408 8.48E-06 -13.1948 -1413716 -23948.5 
523659.9 298.0008392 -17568.891 -0.109617895 1.01E-05 -13.1911 -1398088 -23941.8 
523660.9 298.000061 -17373.165 -0.109602754 8.60E-06 -13.1893 -1382513 -23938.5 
523661.9 298.0007629 -17178.3015 -0.109582209 1.21E-05 -13.1868 -1367006 -23934 
523662.9 298.0008698 -17000.571 -0.109563504 6.40E-06 -13.1845 -1352862 -23929.9 
523663.915 297.9999085 -16806.952 -0.109545627 6.26E-06 -13.1824 -1337455 -23926 
523664.94 297.9994812 -16590.746 -0.109526333 1.36E-05 -13.1801 -1320250 -23921.8 
523665.915 297.9996338 -16397.1275 -0.109512333 1.11E-05 -13.1784 -1304842 -23918.8 
523666.89 297.9999695 -16220.065 -0.109484717 9.92E-06 -13.1751 -1290752 -23912.7 
523667.885 297.9998169 -16043.1935 -0.109468896 7.06E-06 -13.1732 -1276677 -23909.3 
523668.9 298.0001221 -15850.1495 -0.109447077 9.31E-06 -13.1705 -1261315 -23904.5 
523669.9 297.9997864 -15656.724 -0.109418569 9.08E-06 -13.1671 -1245923 -23898.3 
523670.9 297.9991455 -15462.722 -0.109405966 7.37E-06 -13.1656 -1230484 -23895.5 
523671.935 297.9992524 -15252.161 -0.109377444 7.53E-06 -13.1621 -1213728 -23889.3 
523672.92 297.9994202 -15076.6315 -0.10935352 8.30E-06 -13.1593 -1199760 -23884.1 
523673.885 297.9997101 -14900.624 -0.109342326 9.56E-06 -13.1579 -1185754 -23881.6 
523674.88 298.0001831 -14707.102 -0.109317122 1.09E-05 -13.1549 -1170354 -23876.1 
523675.88 297.9997101 -14530.998 -0.109285583 7.96E-06 -13.1511 -1156340 -23869.2 
523676.88 297.9994507 -14337.9515 -0.109261448 6.91E-06 -13.1482 -1140978 -23864 
523677.895 298.0001221 -14139.451 -0.109244154 8.99E-06 -13.1461 -1125182 -23860.2 
523678.9 298.0001984 -13947.1725 -0.109221282 1.17E-05 -13.1434 -1109881 -23855.2 
523679.9 297.9997711 -13753.8205 -0.109197371 7.32E-06 -13.1405 -1094494 -23850 
523680.895 298.0001679 -13577.0265 -0.109177424 1.27E-05 -13.1381 -1080425 -23845.6 
523681.925 298.0001221 -13383.8845 -0.109140389 7.72E-06 -13.1336 -1065056 -23837.5 
523682.945 297.9997864 -13190.551 -0.109109374 1.05E-05 -13.1299 -1049671 -23830.7 
523683.9 298.0001831 -13013.776 -0.1090861 5.26E-06 -13.1271 -1035603 -23825.7 
523684.925 298.0002289 -12820.251 -0.109060498 1.35E-05 -13.124 -1020203 -23820.1 
523685.94 298.0000458 -12627.2065 -0.109028727 1.09E-05 -13.1202 -1004841 -23813.1 
523686.895 297.9994812 -12433.4915 -0.109004902 8.75E-06 -13.1173 -989426 -23807.9 
523687.88 297.9998169 -12240.827 -0.108974083 9.09E-06 -13.1136 -974094 -23801.2 
523688.885 298.0001679 -12065.2005 -0.108942186 9.12E-06 -13.1098 -960118 -23794.2 
523689.9 298.0000306 -11871.5825 -0.108914122 1.11E-05 -13.1064 -944711 -23788.1 
523690.895 298 -11672.125 -0.108883832 1.09E-05 -13.1027 -928838 -23781.5 
523691.895 298.0004273 -11477.93 -0.108856929 5.72E-06 -13.0995 -913385 -23775.6 
523692.91 298.0005646 -11284.0225 -0.10882294 1.31E-05 -13.0954 -897954 -23768.2 
523693.885 298.0001068 -11107.4375 -0.10878089 9.23E-06 -13.0904 -883902 -23759 
523694.885 297.999939 -10914.1045 -0.108746948 7.67E-06 -13.0863 -868517 -23751.6 
523695.895 298.0005036 -10721.1545 -0.108713946 1.23E-05 -13.0823 -853162 -23744.4 
523696.88 298.0005494 -10544.858 -0.108675176 1.12E-05 -13.0776 -839133 -23735.9 
523697.88 298.0003357 -10350.57 -0.10863562 1.04E-05 -13.0729 -823672 -23727.3 
523698.885 298.0003967 -10157.3315 -0.108602765 7.78E-06 -13.0689 -808295 -23720.1 
523699.885 298.0000305 -9963.806 -0.10856218 1.04E-05 -13.064 -792894 -23711.2 
523700.91 297.9997101 -9769.517 -0.108520135 9.99E-06 -13.059 -777433 -23702.1 
523701.9 297.9994202 -9593.221 -0.108477867 1.00E-05 -13.0539 -763404 -23692.8 
523702.87 297.9994507 -9399.6 -0.108436075 1.28E-05 -13.0489 -747996 -23683.7 
523703.88 297.9996643 -9199.9495 -0.108392987 1.08E-05 -13.0437 -732109 -23674.3 
523704.87 297.9993744 -9023.2705 -0.108343571 7.44E-06 -13.0377 -718049 -23663.5 
523705.86 297.9991761 -8829.172 -0.108303693 9.20E-06 -13.0329 -702603 -23654.8 
523706.87 297.9993134 -8635.553 -0.10825437 1.17E-05 -13.027 -687195 -23644 
523707.87 297.9992371 -8459.352 -0.10820306 1.20E-05 -13.0208 -673174 -23632.8 
523708.87 297.9987183 -8265.443 -0.108158951 8.94E-06 -13.0155 -657743 -23623.2 
523709.885 297.9987488 -8070.8645 -0.1080908 1.04E-05 -13.0073 -642259 -23608.3 
523710.865 297.9997711 -7893.2265 -0.108040237 7.12E-06 -13.0012 -628123 -23597.2 
523711.875 297.9994202 -7699.8935 -0.1079791 1.13E-05 -12.9939 -612738 -23583.9 
523712.885 297.9989777 -7506.369 -0.107919858 1.22E-05 -12.9867 -597338 -23570.9 
523713.87 297.9990998 -7311.7915 -0.107856705 1.01E-05 -12.9791 -581854 -23557.2 
523714.87 297.9986878 -7117.596 -0.107803383 1.07E-05 -12.9727 -566400 -23545.5 
523715.85 297.9988251 -6940.245 -0.107727124 1.03E-05 -12.9636 -552287 -23528.8 
523716.85 297.999054 -6740.117 -0.107662843 1.05E-05 -12.9558 -536361 -23514.8 
523717.87 297.9989014 -6528.886 -0.107584299 8.37E-06 -12.9464 -519552 -23497.7 
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523718.88 297.9992981 -6334.4985 -0.107510147 7.76E-06 -12.9374 -504083 -23481.5 
523719.87 297.9991303 -6157.147 -0.107428932 1.10E-05 -12.9277 -489970 -23463.7 
523720.86 297.998642 -5979.701 -0.10734573 1.11E-05 -12.9177 -475849 -23445.5 
523721.86 297.9987641 -5785.219 -0.107250055 4.79E-06 -12.9061 -460373 -23424.7 
523722.87 297.9989472 -5590.2575 -0.10715195 8.99E-06 -12.8943 -444859 -23403.2 
523723.86 297.9989014 -5395.4875 -0.107074495 6.19E-06 -12.885 -429359 -23386.3 
523724.86 297.9986115 -5200.622 -0.106965932 1.18E-05 -12.872 -413852 -23362.6 
523725.87 297.9987793 -5023.0795 -0.106860596 6.38E-06 -12.8593 -399724 -23339.6 
523726.9 297.9989624 -4827.831 -0.106736594 1.13E-05 -12.8444 -384187 -23312.5 
523727.9 297.9981385 -4632.4845 -0.106615306 1.24E-05 -12.8298 -368641 -23286 
523728.86 297.9978791 -4438 -0.106484548 1.37E-05 -12.814 -353165 -23257.5 
523729.875 297.9977417 -4236.435 -0.106344114 9.33E-06 -12.7971 -337125 -23226.8 
523730.875 297.9974823 -4057.839 -0.106194839 8.94E-06 -12.7792 -322913 -23194.2 
523731.845 297.9982758 -3879.4345 -0.106044663 1.03E-05 -12.7611 -308716 -23161.4 
523732.835 297.9986572 -3683.227 -0.10586498 1.29E-05 -12.7395 -293102 -23122.1 
523733.88 297.99823 -3469.601 -0.105669595 1.40E-05 -12.716 -276102 -23079.5 
523734.875 297.9982148 -3273.2985 -0.105474764 1.32E-05 -12.6925 -260481 -23036.9 
523735.82 297.9981079 -3093.936 -0.105243332 1.35E-05 -12.6647 -246208 -22986.4 
523736.82 297.9979858 -2914.0955 -0.105006715 1.42E-05 -12.6362 -231896 -22934.7 
523737.835 297.9976959 -2717.5055 -0.10474094 1.64E-05 -12.6042 -216252 -22876.6 
523738.825 297.9971466 -2520.3405 -0.104434769 1.56E-05 -12.5674 -200562 -22809.8 
523739.835 297.9968109 -2322.2185 -0.10409785 1.80E-05 -12.5268 -184796 -22736.2 
523740.86 297.9968109 -2124.48 -0.103711864 1.78E-05 -12.4804 -169061 -22651.9 
523741.85 297.9971008 -1943.6815 -0.103273628 2.27E-05 -12.4276 -154673 -22556.2 
523742.85 297.9967804 -1739.052 -0.10276295 2.61E-05 -12.3662 -138389 -22444.6 
523743.87 297.9969177 -1522.266 -0.102146162 3.16E-05 -12.292 -121138 -22309.9 
523744.88 297.997406 -1340.031 -0.101408465 3.82E-05 -12.2032 -106636 -22148.8 
523745.86 297.9970856 -1157.5095 -0.100478556 4.70E-05 -12.0913 -92111.7 -21945.7 
523746.85 297.9966431 -939.2865 -0.099237173 6.49E-05 -11.9419 -74746 -21674.5 
523747.885 297.9961853 -737.814 -0.097512814 9.47E-05 -11.7344 -58713.4 -21297.9 
523748.87 297.9966431 -553.667 -0.094798974 0.000159939 -11.4078 -44059.4 -20705.2 
523749.835 297.9968262 -368.562 -0.089584982 0.00035115 -10.7804 -29329.2 -19566.4 
523750.835 297.9960175 -182.977 -0.072288698 0.001639299 -8.699 -14560.8 -15788.7 
523751.83 297.9958191 18.976 0.022268367 0.006112929 2.679707 1510.062 4863.669 
523752.835 297.9951477 220.161 0.082032812 0.000787243 9.871578 17519.86 17916.91 
523753.85 297.99469 420.5805 0.091885227 0.000252147 11.05719 33468.73 20068.8 
523754.845 297.9948578 620.1395 0.095843857 0.000129715 11.53356 49349.13 20933.41 
523755.835 297.9948425 800.363 0.098107552 8.16E-05 11.80596 63690.86 21427.82 
523756.85 297.9945831 995.52 0.099614757 6.03E-05 11.98734 79220.96 21757.01 
523757.845 297.9943695 1210.68 0.100696549 4.45E-05 12.11751 96342.85 21993.29 
523758.845 297.9943238 1400.857 0.101550685 3.58E-05 12.2203 111476.7 22179.84 
523759.86 297.9940796 1573.5205 0.102221984 2.71E-05 12.30108 125216.8 22326.46 
523760.835 297.9938812 1744.6525 0.10278202 2.27E-05 12.36847 138835 22448.78 
523761.81 297.9937592 1930.428 0.103262063 1.98E-05 12.42624 153618.6 22553.63 
523762.81 297.9937287 2114.194 0.103676088 1.98E-05 12.47606 168242.2 22644.06 
523763.825 297.992981 2295.662 0.104027971 1.68E-05 12.51841 182683 22720.91 
523764.84 297.9929199 2476.9395 0.104351181 1.71E-05 12.5573 197108.6 22791.5 
523765.84 297.9932404 2640.605 0.104622715 1.49E-05 12.58998 210132.7 22850.81 
523766.85 297.9929657 2817.8615 0.104875973 1.29E-05 12.62045 224238.3 22906.12 
523767.845 297.9933014 2995.0225 0.105107283 1.57E-05 12.64829 238336.3 22956.64 
523768.83 297.993927 3158.4 0.105326717 1.26E-05 12.6747 251337.5 23004.57 
523769.82 297.9941864 3339.294 0.105520357 1.26E-05 12.698 265732.6 23046.87 
523770.82 297.9933014 3526.698 0.105690866 6.52E-06 12.71852 280645.7 23084.11 
523771.82 297.9927979 3710.559 0.10587382 1.23E-05 12.74053 295276.9 23124.07 
523772.805 297.9927521 3894.8005 0.106035414 5.98E-06 12.75998 309938.4 23159.36 
523773.815 297.9926606 4079.617 0.106183727 1.11E-05 12.77783 324645.6 23191.75 
523774.835 297.9924317 4265.3915 0.106317073 1.05E-05 12.79387 339429.1 23220.88 
523775.82 297.9923096 4434.512 0.106454958 8.78E-06 12.81046 352887.3 23250.99 
523776.805 297.9928436 4619.9985 0.106585785 5.99E-06 12.82621 367647.8 23279.57 
523777.82 297.9929962 4806.634 0.106696259 8.55E-06 12.8395 382499.8 23303.7 
523778.805 297.9933014 4977.287 0.106818146 1.05E-05 12.85417 396079.9 23330.32 
523779.795 297.9935456 5164.0185 0.106912091 9.12E-06 12.86547 410939.5 23350.84 
523780.795 297.9934845 5350.558 0.107007923 9.72E-06 12.87701 425783.9 23371.77 
523781.795 297.9933167 5521.115 0.107114466 9.38E-06 12.88983 439356.4 23395.04 
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523782.81 297.9935456 5708.7065 0.107182484 5.24E-06 12.89801 454284.4 23409.89 
523783.82 297.9932862 5901.7535 0.107282363 1.00E-05 12.91003 469646.6 23431.71 
523784.83 297.9924164 6089.345 0.107361011 1.18E-05 12.9195 484574.7 23448.89 
523785.805 297.9927521 6277.606 0.107442281 8.84E-06 12.92928 499556 23466.64 
523786.795 297.9927521 6448.831 0.107527073 6.41E-06 12.93948 513181.7 23485.15 
523787.81 297.9922486 6637.093 0.107589887 5.63E-06 12.94704 528163.1 23498.87 
523788.795 297.9929505 6825.4515 0.107654031 6.41E-06 12.95476 543152.2 23512.88 
523789.81 297.9930573 7012.564 0.107726918 1.10E-05 12.96353 558042.1 23528.8 
523790.825 297.9920502 7201.3985 0.107777666 1.28E-05 12.96963 573069.1 23539.89 
523791.825 297.9923706 7390.521 0.107853164 7.69E-06 12.97872 588119 23556.38 
523792.835 297.9926605 7578.783 0.107905663 7.04E-06 12.98504 603100.4 23567.84 
523793.855 297.9925842 7750.7745 0.107955295 4.75E-06 12.99101 616787 23578.68 
523794.845 297.9928284 7922.861 0.108012175 1.01E-05 12.99785 630481.2 23591.11 
523795.805 297.9923706 8111.312 0.108068024 1.03E-05 13.00458 645477.7 23603.3 
523796.805 297.9922333 8305.602 0.108118008 9.04E-06 13.01059 660938.8 23614.22 
523797.82 297.9924775 8494.8195 0.10817566 1.24E-05 13.01753 675996.3 23626.81 
523798.82 297.9923096 8700.404 0.108222548 9.41E-06 13.02317 692356.2 23637.05 
523799.81 297.9923401 8872.2995 0.108269211 6.17E-06 13.02879 706035.2 23647.25 
523800.795 297.9932099 9028.402 0.108316198 4.93E-06 13.03444 718457.4 23657.51 
523801.79 297.9940033 9218.194 0.108358297 4.16E-06 13.03951 733560.6 23666.7 
523802.845 297.9943085 9423.778 0.108400872 1.16E-05 13.04463 749920.4 23676 
523803.935 297.9944611 9630.319 0.108434709 5.27E-06 13.0487 766356.4 23683.39 
523804.975 297.9948578 9820.11 0.108475798 5.83E-06 13.05365 781459.5 23692.37 
523806.015 297.9947358 10014.1135 0.10851772 6.94E-06 13.05869 796897.8 23701.52 
523807.145 297.9942017 10236.8305 0.108546323 7.55E-06 13.06213 814621.1 23707.77 
523809.24 297.994751 10616.797 0.108620056 7.21E-06 13.07101 844857.9 23723.87 
523809.86 297.9943543 10739.497 0.108663054 7.29E-06 13.07618 854622 23733.27 
523811.065 297.9944306 10962.788 0.108692666 7.69E-06 13.07974 872391 23739.73 
523812.35 297.9947815 11220.1495 0.108769107 8.50E-06 13.08894 892871.1 23756.43 
523813.64 297.9946594 11465.6425 0.108792752 8.13E-06 13.09179 912406.8 23761.59 
523814.89 297.9947357 11671.2255 0.108821962 6.31E-06 13.0953 928766.6 23767.97 
523816 297.9947968 11877.479 0.108845795 5.41E-06 13.09817 945179.7 23773.18 
523817.08 297.9949799 12089.763 0.108878189 6.59E-06 13.10207 962072.8 23780.25 
523818.155 297.9952393 12279.6505 0.108907066 1.05E-05 13.10554 977183.5 23786.56 
523819.195 297.9954987 12469.73 0.108940519 8.15E-06 13.10957 992309.6 23793.87 
523820.3 297.9956055 12676.2705 0.108960344 7.20E-06 13.11195 1008746 23798.2 
523821.51 297.9957581 12916.404 0.109015377 7.25E-06 13.11858 1027855 23810.22 
523822.74 297.9959107 13145.3395 0.109050106 1.19E-05 13.12276 1046073 23817.8 
523823.88 297.9955445 13335.035 0.109066053 5.28E-06 13.12468 1061168 23821.29 
523825.015 297.9954224 13558.707 0.109090207 6.43E-06 13.12758 1078968 23826.56 
523826.085 297.9957886 13765.6305 0.109108802 7.50E-06 13.12982 1095434 23830.62 
523827.165 297.995163 13955.9975 0.109148909 8.73E-06 13.13465 1110583 23839.38 
523828.415 297.994751 14185.2215 0.109179934 1.18E-05 13.13838 1128824 23846.16 
523830.585 297.9953308 14598.974 0.109214464 1.02E-05 13.14253 1161749 23853.7 
523831.29 297.9954071 14722.2505 0.109221706 4.07E-06 13.14341 1171559 23855.28 
523832.415 297.9956208 14929.364 0.109246605 9.11E-06 13.1464 1188041 23860.72 
523833.485 297.9955597 15136.478 0.109274626 9.28E-06 13.14977 1204523 23866.84 
523834.475 297.9952698 15326.651 0.109297333 7.87E-06 13.15251 1219656 23871.8 
523836.505 297.9954834 15711.975 0.109334942 1.06E-05 13.15703 1250319 23880.01 
523837.265 297.9957428 15846.542 0.109377172 9.39E-06 13.16211 1261028 23889.24 
523838.605 297.9960022 16087.442 0.109392284 9.83E-06 13.16393 1280198 23892.54 
523839.805 297.9957428 16317.7175 0.109406254 1.04E-05 13.16561 1298523 23895.59 
523840.895 297.9956818 16524.447 0.109439981 1.02E-05 13.16967 1314974 23902.96 
523841.99 297.9954834 16730.605 0.109446786 1.24E-05 13.17049 1331379 23904.44 
523842.945 297.995224 16904.413 0.109461967 1.32E-05 13.17232 1345210 23907.76 
523843.985 297.9953156 17094.299 0.109490761 7.48E-06 13.17578 1360321 23914.05 
523845.125 297.9949799 17323.1395 0.109496883 8.48E-06 13.17652 1378532 23915.38 
523846.115 297.9945984 17513.5045 0.109515206 9.38E-06 13.17873 1393680 23919.39 
523847.24 297.9945984 17720.331 0.109520917 8.51E-06 13.17941 1410139 23920.63 
523848.36 297.9948578 17927.7325 0.109555428 1.29E-05 13.18357 1426644 23928.17 
523849.55 297.9949493 18134.752 0.109576796 9.71E-06 13.18614 1443118 23932.84 
523850.895 297.9946442 18380.628 0.109594639 1.33E-05 13.18828 1462684 23936.74 
523852.09 297.9945984 18604.49 0.109618303 1.07E-05 13.19113 1480498 23941.9 
523853.305 297.9948273 18828.9265 0.109653825 4.13E-06 13.19541 1498358 23949.66 
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523854.515 297.9947052 19059.1085 0.109659799 6.02E-06 13.19613 1516676 23950.97 
523855.665 297.9949036 19282.5 0.109671366 8.96E-06 13.19752 1534453 23953.49 
523856.775 297.9945069 19489.457 0.109689111 7.88E-06 13.19965 1550922 23957.37 
523857.925 297.9938507 19684.0275 0.109713455 6.08E-06 13.20258 1566405 23962.69 
523859.05 297.9936676 19839.086 0.109712726 6.83E-06 13.20249 1578744 23962.53 
523859.97 297.993393 19902.4325 0.109717116 4.56E-06 13.20302 1583785 23963.49 
523860.915 297.9934235 19922.336 0.109719024 1.00E-05 13.20325 1585369 23963.9 
523861.86 297.9927826 19932.8595 0.109723844 6.70E-06 13.20383 1586207 23964.96 
523870.925 297.9933472 19998.8475 0.109730047 8.78E-06 13.20458 1591458 23966.31 
523880.775 297.9913178 19904.715 0.109699465 3.69E-05 13.2009 1583967 23959.63 
523881.565 297.9911652 19709.8905 0.109693112 1.03E-05 13.20013 1568463 23958.24 
523882.815 297.9907532 19412.734 0.109689776 9.46E-06 13.19973 1544816 23957.51 
523883.8 297.990738 19205.338 0.109656614 1.24E-05 13.19574 1528312 23950.27 
523885.71 297.9907074 18807.096 0.109633899 4.51E-06 13.19301 1496621 23945.31 
523886.51 297.9909058 18633.7665 0.109607779 9.31E-06 13.18987 1482828 23939.61 
523887.705 297.9909821 18383.201 0.109590118 7.07E-06 13.18774 1462889 23935.75 
523888.75 297.9913025 18161.4455 0.109575514 7.90E-06 13.18598 1445242 23932.56 
523890.665 297.9914246 17797.081 0.109568949 5.35E-06 13.18519 1416247 23931.12 
523892.22 297.9906311 17508.6165 0.109521574 9.91E-06 13.17949 1393291 23920.78 
523892.9 297.9906616 17370.6985 0.109492965 8.27E-06 13.17605 1382316 23914.53 
523893.985 297.9902496 17175.6445 0.109475136 3.55E-06 13.1739 1366794 23910.63 
523895.905 297.9911041 16814.537 0.109444077 5.98E-06 13.17017 1338058 23903.85 
523896.64 297.9913483 16660.3495 0.109429079 1.07E-05 13.16836 1325788 23900.58 
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523904.635 297.990326 15138.7695 0.109253186 6.22E-06 13.14719 1204705 23862.16 
523905.735 297.9911804 14927.4445 0.109231743 1.05E-05 13.14461 1187888 23857.47 
523906.735 297.9914856 14734.1125 0.109199679 4.87E-06 13.14076 1172503 23850.47 
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523911.22 297.9914093 13887.334 0.109095216 1.00E-05 13.12818 1105119 23827.66 
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523925.005 297.9915467 11275.2345 0.108720176 9.74E-06 13.08305 897254.7 23745.74 
523926.94 297.9918823 10891.823 0.108665938 9.65E-06 13.07653 866743.7 23733.9 
523927.675 297.9917755 10766.613 0.108621913 1.13E-05 13.07123 856779.8 23724.28 
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523932.635 297.9929504 9836.456 0.108472877 1.07E-05 13.05329 782760.3 23691.73 
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523940.575 297.9920959 8315.41 0.108059799 1.10E-05 13.00359 661719.3 23601.51 
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523946.8 297.9931183 7123.8175 0.107709664 8.70E-06 12.96145 566895.4 23525.03 
523947.945 297.9927216 6894.5325 0.107628763 1.22E-05 12.95172 548649.5 23507.37 
523949.09 297.9923554 6676.619 0.107583144 6.69E-06 12.94623 531308.5 23497.4 
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523951.29 297.9927063 6286.424 0.107416822 5.16E-06 12.92621 500257.7 23461.07 
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523975.04 297.9931946 1698.1085 0.102735239 2.54E-05 12.36284 135131.2 22438.56 
523976.12 297.9928894 1498.0645 0.102147005 3.06E-05 12.29206 119212.2 22310.09 
523977.195 297.9923859 1274.178 0.101415466 3.79E-05 12.20403 101395.9 22150.31 
523978.225 297.9927521 1073.137 0.100504399 4.72E-05 12.09439 85397.53 21951.32 
523979.13 297.9929504 889.179 0.099307287 6.31E-05 11.95034 70758.62 21689.86 
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523984.695 297.9933929 25.4095 0.009608915 0.001143309 1.156307 2022.024 2098.698 
523985.75 297.993042 6.948 -0.00825031 0.000460066 -0.99282 552.9043 -1801.96 
523994.795 297.9937897 0.034 -0.01630671 1.32E-06 -1.9623 2.705634 -3561.57 

 


	Influence of Magnetic Nanoparticles and Magnetic Stress on an Ionic Liquid Electrospray Source
	Recommended Citation

	INFLUENCE OF MAGNETIC NANOPARTICLES AND MAGNETIC STRESS ON AN IONIC LIQUID ELECTROSPRAY SOURCE
	List of Figures
	List of Tables
	Preface
	Acknowledgements
	Definitions
	Abstract
	Chapter 1  Introduction
	1.1. Motivation
	1.2. Aim and Scope
	1.3. Structure of Document

	Chapter 2  Literature Search and Motivation
	2.1. Electrospray
	2.1.1. Ionic Liquid Electrospray Propulsion
	2.1.2. Angular Divergence of Electrospray Beam
	2.1.3. Energy of Electrospray Beam
	2.1.4. Polydispersity of Electrospray

	2.2. Ferrofluids and the Rosensweig Instability
	2.2.1. Synthesis of Ferrofluids
	2.2.2. The Rosensweig Instability and Ferrohydrodynamics
	2.2.3. Potential of Ionic Liquid Ferrofluids in Electrospray Propulsion


	Chapter 3  Equipment and Facilities for Capillary Electrospray Source Experiments
	3.1. Propellant Properties
	3.2. Capillary Electrospray Source
	3.3. Pressure Feed System and Calibration
	3.4. Helmholtz Coil – Theory and Apparatus
	3.5. Ultra-High-Vacuum Facility
	3.6. Time-of-Flight Mass Spectrometry
	3.7. Air Force Research Laboratory Time-of-flight Mass Spectrometer Facility

	Chapter 4  Onset and Stability of the Capillary Electrospray Source
	4.1. Motivation and Goal
	4.2. Electrospray Onset Experiment
	4.2.1. Experimental Setup
	4.2.2. Procedures
	4.2.3. Results and Discussion – Magnetic Influence on Onset

	4.3. Stability Island of the Capillary Electrospray Source
	4.3.1. Positive-Polarity Stability Island Experiment
	4.3.1.a. Experimental Setup
	4.3.1.b. Procedures
	4.3.1.c. Results

	4.3.2. Negative-Polarity Stability Island Experiment
	4.3.2.a. Experimental Setup
	4.3.2.b. Procedures
	4.3.2.c. Results

	4.3.3. Analysis and Discussion of Stability Island
	4.3.3.a. Nanoparticle Influence on the Stability Island
	4.3.3.b. Nanoparticle Influence on the Emission Current
	4.3.3.c. Magnetic Influence on Stability Island
	4.3.3.d. Magnetic Influence on the Emission Current


	4.4. Conclusions:  Electrospray Onset, Emission Current and Stability Island

	Chapter 5  Beam Diagnostics of the Capillary Electrospray Source
	5.1. Motivation and Goal
	5.2. Apparatuses and Procedure
	5.2.1. Helmholtz Coil
	5.2.2. Faraday Stack
	5.2.3. Retarding Potential Analyzer
	5.2.4. Experiment and Procedures

	5.3. Results and Discussion
	5.3.1. Neat Ionic Liquid Electrospray Beam Divergence
	5.3.2. Nanoparticle Influence on Beam Divergence of Magnetic-Field-Free ILFF Electrospray
	5.3.3. Magnetic Influence on Beam Divergence of Ionic Liquid Ferrofluid Electrospray
	5.3.4. Neat Ionic Liquid Electrospray Beam Energy
	5.3.5. Nanoparticle Influence on Beam Energy of an Ionic Liquid Ferrofluid Electrospray
	5.3.6. Magnetic Influence on Beam Energy

	5.4. Conclusions: Beam Diagnostics

	Chapter 6  Mass Spectrometry of An Ionic Liquid Ferrofluid Capillary Electrospray
	6.1. Motivation and Goal
	6.2. Measuring Nanoparticles in a Mass Spectrometer
	6.3. Apparatus and Procedure
	6.3.1. Summed Time-of-Flight Mass Spectrum
	6.3.2. Experimental Procedures

	6.4. Results and Discussion
	6.4.1. Intensity Axis and Spectra Repeatability
	6.4.2. Mass Spectrometry of Neat Ionic Liquid Capillary Electrospray
	6.4.3. Composition of An Ionic Liquid Ferrofluid Capillary Electrospray Beam
	6.4.4. Potential for Nanoparticle Distribution in Summed Mass Spectra
	6.4.5. Magnetic Effect on Mass Spectra
	6.4.6. Other Observations on Ionic Liquid Ferrofluid Capillary Electrospray Mass Spectra
	6.4.6.a. Appearance of Low Mass-to-Charge Products (Ions)
	6.4.6.b. Magnetic Influence on Ion Peak Intensity
	6.4.6.c. Distributions in High Mass-to-Charge Range (Droplets)


	6.5. Conclusions: Mass Spectrometry of Ionic Liquid Ferrofluid Capillary Electrospray

	Chapter 7  Electrospray from a Single Peak Rosensweig Instability
	7.1. Motivation and Goal
	7.2. Apparatus and Procedure
	7.2.1. Rosensweig Peak Electrospray Source
	7.2.2. Solid Needle Emitter Electrospray Source Apparatus
	7.2.3. Experiments
	7.2.4. Procedure for Rosensweig Peak Electrospray Source Characterization
	7.2.5. Procedure to collect TOF Mass Spectra from the Rosensweig Peak Electrospray Source
	7.2.6. Procedure to collect TOF Mass Spectra from the Solid Needle Electrospray Source

	7.3. Results from Experiment
	7.3.1. Characteristics of a Rosensweig Instability Peak Source
	7.3.2. Rosensweig Peak Electrospray Source Cation TOF Spectrum
	7.3.3. Rosensweig Peak Electrospray Source Anion Mass Spectrum
	7.3.4. Solid-Needle Electrospray Mass Spectra using Neat Ionic Liquid

	7.4. Analysis and Discussion
	7.4.1. Mass Flow Rate Variability
	7.4.2. Varying Emission Current
	7.4.3. Varying Magnetic Field Strength
	7.4.4. Comparison between Rosensweig Peak Electrospray Source and Solid Needle Electrospray Source
	7.4.5. Comparison between Rosensweig Peak Electrospray Source and Capillary Electrospray Source

	7.5. Conclusions: Rosensweig Peak Electrospray Source

	Chapter 8   Conclusions
	8.1. Introduction
	8.2. Summary of Experiments and Findings
	8.2.1. Operation of a Magnetic-Stress-Free ILFF Electrospray Source
	8.2.2. Operation of a Magnetically Stressed ILFF Electrospray Source
	8.2.3. Conclusions on Rosensweig Peak Source Operation

	8.3. Achievement of Research Goals
	8.4. Future Work

	References
	Appendices
	Appendix A.  μAmmeter Calibration Tables
	Appendix B.  Emission Frequency in Electrospray Onset Experiments
	Appendix C.  Current Density Plots from Beam Divergence Experiment
	Appendix D.  Motivation of Beam Energy Experiments
	Appendix E.  Magnetic Lorentz Force on Charged Particles in CES Electrospray Beam
	Appendix F.  Beam Energy plots from RPA Experiment
	Appendix G.  Mass Spectra of ILFF Electrospray at Minimum Flowrate Operation
	Appendix H.  SIMION Simulations of TOF-MS Extraction Region
	Appendix I.  Discussion on Summed Mass Spectrum
	Appendix J.  Summed TOF Mass Spectra for ILFF propellants
	Appendix K.  VSM Data for NJ39074 ILFF




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


